Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import shutil | |
| import sys | |
| import tempfile | |
| import unittest | |
| from contextlib import contextmanager | |
| from pathlib import Path | |
| git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) | |
| sys.path.append(os.path.join(git_repo_path, "utils")) | |
| import check_copies # noqa: E402 | |
| from check_copies import convert_to_localized_md, find_code_in_transformers, is_copy_consistent # noqa: E402 | |
| # This is the reference code that will be used in the tests. | |
| # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. | |
| REFERENCE_CODE = """ def __init__(self, config): | |
| super().__init__() | |
| self.transform = BertPredictionHeadTransform(config) | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
| # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
| self.decoder.bias = self.bias | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| hidden_states = self.decoder(hidden_states) | |
| return hidden_states | |
| """ | |
| MOCK_BERT_CODE = """from ...modeling_utils import PreTrainedModel | |
| def bert_function(x): | |
| return x | |
| class BertAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| class BertModel(BertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.bert = BertEncoder(config) | |
| @add_docstring(BERT_DOCSTRING) | |
| def forward(self, x): | |
| return self.bert(x) | |
| """ | |
| MOCK_BERT_COPY_CODE = """from ...modeling_utils import PreTrainedModel | |
| # Copied from transformers.models.bert.modeling_bert.bert_function | |
| def bert_copy_function(x): | |
| return x | |
| # Copied from transformers.models.bert.modeling_bert.BertAttention | |
| class BertCopyAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # Copied from transformers.models.bert.modeling_bert.BertModel with Bert->BertCopy all-casing | |
| class BertCopyModel(BertCopyPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.bertcopy = BertCopyEncoder(config) | |
| @add_docstring(BERTCOPY_DOCSTRING) | |
| def forward(self, x): | |
| return self.bertcopy(x) | |
| """ | |
| def replace_in_file(filename, old, new): | |
| with open(filename, "r", encoding="utf-8") as f: | |
| content = f.read() | |
| content = content.replace(old, new) | |
| with open(filename, "w", encoding="utf-8") as f: | |
| f.write(content) | |
| def create_tmp_repo(tmp_dir): | |
| """ | |
| Creates a mock repository in a temporary folder for testing. | |
| """ | |
| tmp_dir = Path(tmp_dir) | |
| if tmp_dir.exists(): | |
| shutil.rmtree(tmp_dir) | |
| tmp_dir.mkdir(exist_ok=True) | |
| model_dir = tmp_dir / "src" / "transformers" / "models" | |
| model_dir.mkdir(parents=True, exist_ok=True) | |
| models = {"bert": MOCK_BERT_CODE, "bertcopy": MOCK_BERT_COPY_CODE} | |
| for model, code in models.items(): | |
| model_subdir = model_dir / model | |
| model_subdir.mkdir(exist_ok=True) | |
| with open(model_subdir / f"modeling_{model}.py", "w", encoding="utf-8") as f: | |
| f.write(code) | |
| def patch_transformer_repo_path(new_folder): | |
| """ | |
| Temporarily patches the variables defines in `check_copies` to use a different location for the repo. | |
| """ | |
| old_repo_path = check_copies.REPO_PATH | |
| old_doc_path = check_copies.PATH_TO_DOCS | |
| old_transformer_path = check_copies.TRANSFORMERS_PATH | |
| repo_path = Path(new_folder).resolve() | |
| check_copies.REPO_PATH = str(repo_path) | |
| check_copies.PATH_TO_DOCS = str(repo_path / "docs" / "source" / "en") | |
| check_copies.TRANSFORMERS_PATH = str(repo_path / "src" / "transformers") | |
| try: | |
| yield | |
| finally: | |
| check_copies.REPO_PATH = old_repo_path | |
| check_copies.PATH_TO_DOCS = old_doc_path | |
| check_copies.TRANSFORMERS_PATH = old_transformer_path | |
| class CopyCheckTester(unittest.TestCase): | |
| def test_find_code_in_transformers(self): | |
| with tempfile.TemporaryDirectory() as tmp_folder: | |
| create_tmp_repo(tmp_folder) | |
| with patch_transformer_repo_path(tmp_folder): | |
| code = find_code_in_transformers("models.bert.modeling_bert.BertAttention") | |
| reference_code = ( | |
| "class BertAttention(nn.Module):\n def __init__(self, config):\n super().__init__()\n" | |
| ) | |
| self.assertEqual(code, reference_code) | |
| def test_is_copy_consistent(self): | |
| path_to_check = ["src", "transformers", "models", "bertcopy", "modeling_bertcopy.py"] | |
| with tempfile.TemporaryDirectory() as tmp_folder: | |
| # Base check | |
| create_tmp_repo(tmp_folder) | |
| with patch_transformer_repo_path(tmp_folder): | |
| file_to_check = os.path.join(tmp_folder, *path_to_check) | |
| diffs = is_copy_consistent(file_to_check) | |
| self.assertEqual(diffs, []) | |
| # Base check with an inconsistency | |
| create_tmp_repo(tmp_folder) | |
| with patch_transformer_repo_path(tmp_folder): | |
| file_to_check = os.path.join(tmp_folder, *path_to_check) | |
| replace_in_file(file_to_check, "self.bertcopy(x)", "self.bert(x)") | |
| diffs = is_copy_consistent(file_to_check) | |
| self.assertEqual(diffs, [["models.bert.modeling_bert.BertModel", 22]]) | |
| diffs = is_copy_consistent(file_to_check, overwrite=True) | |
| with open(file_to_check, "r", encoding="utf-8") as f: | |
| self.assertEqual(f.read(), MOCK_BERT_COPY_CODE) | |
| def test_convert_to_localized_md(self): | |
| localized_readme = check_copies.LOCALIZED_READMES["README_zh-hans.md"] | |
| md_list = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" | |
| " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" | |
| " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" | |
| " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." | |
| " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," | |
| " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" | |
| " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" | |
| " method has been applied to compress GPT2 into" | |
| " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" | |
| " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," | |
| " Multilingual BERT into" | |
| " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" | |
| " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" | |
| " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" | |
| " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" | |
| " Luong, Quoc V. Le, Christopher D. Manning." | |
| ) | |
| localized_md_list = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
| " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
| " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
| " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
| ) | |
| converted_md_list_sample = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
| " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
| " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
| " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." | |
| " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" | |
| " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" | |
| " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" | |
| " method has been applied to compress GPT2 into" | |
| " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" | |
| " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," | |
| " Multilingual BERT into" | |
| " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" | |
| " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" | |
| " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" | |
| " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," | |
| " Christopher D. Manning 发布。\n" | |
| ) | |
| num_models_equal, converted_md_list = convert_to_localized_md( | |
| md_list, localized_md_list, localized_readme["format_model_list"] | |
| ) | |
| self.assertFalse(num_models_equal) | |
| self.assertEqual(converted_md_list, converted_md_list_sample) | |
| num_models_equal, converted_md_list = convert_to_localized_md( | |
| md_list, converted_md_list, localized_readme["format_model_list"] | |
| ) | |
| # Check whether the number of models is equal to README.md after conversion. | |
| self.assertTrue(num_models_equal) | |
| link_changed_md_list = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" | |
| " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" | |
| " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" | |
| " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." | |
| ) | |
| link_unchanged_md_list = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" | |
| " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
| " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
| " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
| ) | |
| converted_md_list_sample = ( | |
| "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" | |
| " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" | |
| " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" | |
| " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" | |
| ) | |
| num_models_equal, converted_md_list = convert_to_localized_md( | |
| link_changed_md_list, link_unchanged_md_list, localized_readme["format_model_list"] | |
| ) | |
| # Check if the model link is synchronized. | |
| self.assertEqual(converted_md_list, converted_md_list_sample) | |