Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a clone of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import importlib.metadata | |
import tempfile | |
import unittest | |
from packaging import version | |
from transformers import ( | |
AutoModel, | |
AutoModelForCausalLM, | |
AutoModelForSeq2SeqLM, | |
AutoModelForSequenceClassification, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
pipeline, | |
) | |
from transformers.testing_utils import ( | |
is_torch_available, | |
require_accelerate, | |
require_bitsandbytes, | |
require_torch, | |
require_torch_gpu, | |
require_torch_multi_gpu, | |
slow, | |
) | |
def get_some_linear_layer(model): | |
if model.config.model_type == "gpt2": | |
return model.transformer.h[0].mlp.c_fc | |
return model.transformer.h[0].mlp.dense_4h_to_h | |
if is_torch_available(): | |
import torch | |
import torch.nn as nn | |
class LoRALayer(nn.Module): | |
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" | |
def __init__(self, module: nn.Module, rank: int): | |
super().__init__() | |
self.module = module | |
self.adapter = nn.Sequential( | |
nn.Linear(module.in_features, rank, bias=False), | |
nn.Linear(rank, module.out_features, bias=False), | |
) | |
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 | |
nn.init.normal_(self.adapter[0].weight, std=small_std) | |
nn.init.zeros_(self.adapter[1].weight) | |
self.adapter.to(module.weight.device) | |
def forward(self, input, *args, **kwargs): | |
return self.module(input, *args, **kwargs) + self.adapter(input) | |
class Base4bitTest(unittest.TestCase): | |
# We keep the constants inside the init function and model loading inside setUp function | |
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) | |
# Therefore here we use only bloom-1b3 to test our module | |
model_name = "bigscience/bloom-1b7" | |
# Constant values | |
EXPECTED_RELATIVE_DIFFERENCE = ( | |
2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change | |
) | |
input_text = "Hello my name is" | |
EXPECTED_OUTPUTS = set() | |
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") | |
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") | |
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") | |
MAX_NEW_TOKENS = 10 | |
def setUp(self): | |
# Models and tokenizer | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
class Bnb4BitTest(Base4bitTest): | |
def setUp(self): | |
super().setUp() | |
# Models and tokenizer | |
self.model_fp16 = AutoModelForCausalLM.from_pretrained( | |
self.model_name, torch_dtype=torch.float16, device_map="auto" | |
) | |
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
def tearDown(self): | |
r""" | |
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
""" | |
del self.model_fp16 | |
del self.model_4bit | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_quantization_config_json_serialization(self): | |
r""" | |
A simple test to check if the quantization config is correctly serialized and deserialized | |
""" | |
config = self.model_4bit.config | |
self.assertTrue(hasattr(config, "quantization_config")) | |
_ = config.to_dict() | |
_ = config.to_diff_dict() | |
_ = config.to_json_string() | |
def test_memory_footprint(self): | |
r""" | |
A simple test to check if the model conversion has been done correctly by checking on the | |
memory footprint of the converted model and the class type of the linear layers of the converted models | |
""" | |
from bitsandbytes.nn import Params4bit | |
mem_fp16 = self.model_fp16.get_memory_footprint() | |
mem_4bit = self.model_4bit.get_memory_footprint() | |
self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) | |
linear = get_some_linear_layer(self.model_4bit) | |
self.assertTrue(linear.weight.__class__ == Params4bit) | |
def test_linear_are_4bit(self): | |
r""" | |
A simple test to check if the model conversion has been done correctly by checking on the | |
memory footprint of the converted model and the class type of the linear layers of the converted models | |
""" | |
from transformers import T5PreTrainedModel | |
self.model_fp16.get_memory_footprint() | |
self.model_4bit.get_memory_footprint() | |
for name, module in self.model_4bit.named_modules(): | |
if isinstance(module, torch.nn.Linear): | |
if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: | |
# 4-bit parameters are packed in uint8 variables | |
self.assertTrue(module.weight.dtype == torch.uint8) | |
def test_generate_quality(self): | |
r""" | |
Test the generation quality of the quantized model and see that we are matching the expected output. | |
Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
""" | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
def test_generate_quality_config(self): | |
r""" | |
Test that loading the model with the config is equivalent | |
""" | |
bnb_config = BitsAndBytesConfig() | |
bnb_config.load_in_4bit = True | |
model_4bit_from_config = AutoModelForCausalLM.from_pretrained( | |
self.model_name, quantization_config=bnb_config, device_map="auto" | |
) | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
output_sequences = model_4bit_from_config.generate( | |
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 | |
) | |
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
def test_raise_on_save_pretrained(self): | |
r""" | |
Test whether trying to save a model after converting it in 8-bit will throw a warning. | |
""" | |
with self.assertRaises(NotImplementedError), tempfile.TemporaryDirectory() as tmpdirname: | |
self.model_4bit.save_pretrained(tmpdirname) | |
def test_raise_if_config_and_load_in_4bit(self): | |
r""" | |
Test that loading the model with the config and `load_in_4bit` raises an error | |
""" | |
bnb_config = BitsAndBytesConfig() | |
with self.assertRaises(ValueError): | |
_ = AutoModelForCausalLM.from_pretrained( | |
self.model_name, | |
quantization_config=bnb_config, | |
load_in_4bit=True, | |
device_map="auto", | |
bnb_4bit_quant_type="nf4", | |
) | |
def test_device_and_dtype_assignment(self): | |
r""" | |
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. | |
Checks also if other models are casted correctly. | |
""" | |
with self.assertRaises(ValueError): | |
# Tries with `str` | |
self.model_4bit.to("cpu") | |
with self.assertRaises(ValueError): | |
# Tries with a `dtype`` | |
self.model_4bit.to(torch.float16) | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_4bit.to(torch.device("cuda:0")) | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_4bit.float() | |
with self.assertRaises(ValueError): | |
# Tries with a `device` | |
self.model_4bit.half() | |
# Test if we did not break anything | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
self.model_fp16 = self.model_fp16.to(torch.float32) | |
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
# Check this does not throw an error | |
_ = self.model_fp16.to("cpu") | |
# Check this does not throw an error | |
_ = self.model_fp16.half() | |
# Check this does not throw an error | |
_ = self.model_fp16.float() | |
def test_fp32_4bit_conversion(self): | |
r""" | |
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
""" | |
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_4bit=True, device_map="auto") | |
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) | |
class Bnb4BitT5Test(unittest.TestCase): | |
def setUpClass(cls): | |
cls.model_name = "t5-small" | |
cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense | |
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) | |
cls.input_text = "Translate in German: Hello, my dog is cute" | |
def tearDown(self): | |
r""" | |
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
""" | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_inference_without_keep_in_fp32(self): | |
r""" | |
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test | |
both cases. | |
""" | |
from transformers import T5ForConditionalGeneration | |
modules = T5ForConditionalGeneration._keep_in_fp32_modules | |
T5ForConditionalGeneration._keep_in_fp32_modules = None | |
# test with `t5-small` | |
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
_ = model.generate(**encoded_input) | |
# test with `flan-t5-small` | |
model = T5ForConditionalGeneration.from_pretrained( | |
self.dense_act_model_name, load_in_4bit=True, device_map="auto" | |
) | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
_ = model.generate(**encoded_input) | |
T5ForConditionalGeneration._keep_in_fp32_modules = modules | |
def test_inference_with_keep_in_fp32(self): | |
r""" | |
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. | |
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test | |
both cases. | |
""" | |
import bitsandbytes as bnb | |
from transformers import T5ForConditionalGeneration | |
# test with `t5-small` | |
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
# there was a bug with decoders - this test checks that it is fixed | |
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
_ = model.generate(**encoded_input) | |
# test with `flan-t5-small` | |
model = T5ForConditionalGeneration.from_pretrained( | |
self.dense_act_model_name, load_in_4bit=True, device_map="auto" | |
) | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) | |
_ = model.generate(**encoded_input) | |
class Classes4BitModelTest(Base4bitTest): | |
def setUp(self): | |
super().setUp() | |
# model_name | |
self.model_name = "bigscience/bloom-560m" | |
self.seq_to_seq_name = "t5-small" | |
# Different types of model | |
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
# Sequence classification model | |
self.sequence_model = AutoModelForSequenceClassification.from_pretrained( | |
self.model_name, load_in_4bit=True, device_map="auto" | |
) | |
# CausalLM model | |
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") | |
# Seq2seq model | |
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( | |
self.seq_to_seq_name, load_in_4bit=True, device_map="auto" | |
) | |
def tearDown(self): | |
r""" | |
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
""" | |
del self.base_model | |
del self.sequence_model | |
del self.model_4bit | |
del self.seq_to_seq_model | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_correct_head_class(self): | |
r""" | |
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) | |
are kept in their native class. | |
""" | |
from bitsandbytes.nn import Params4bit | |
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) | |
# Other heads should be nn.Parameter | |
self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) | |
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) | |
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) | |
class Pipeline4BitTest(Base4bitTest): | |
def setUp(self): | |
super().setUp() | |
def tearDown(self): | |
r""" | |
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to | |
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 | |
""" | |
del self.pipe | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_pipeline(self): | |
r""" | |
The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since | |
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything | |
on pipline. | |
""" | |
# self._clear_cuda_cache() | |
self.pipe = pipeline( | |
"text-generation", | |
model=self.model_name, | |
model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, | |
max_new_tokens=self.MAX_NEW_TOKENS, | |
) | |
# Real second forward pass | |
pipeline_output = self.pipe(self.input_text) | |
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) | |
class Bnb4bitTestMultiGpu(Base4bitTest): | |
def setUp(self): | |
super().setUp() | |
def test_multi_gpu_loading(self): | |
r""" | |
This tests that the model has been loaded and can be used correctly on a multi-GPU setup. | |
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice | |
""" | |
model_parallel = AutoModelForCausalLM.from_pretrained( | |
self.model_name, load_in_4bit=True, device_map="balanced" | |
) | |
# Check correct device map | |
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) | |
# Check that inference pass works on the model | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
# Second real batch | |
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
class Bnb4BitTestTraining(Base4bitTest): | |
def setUp(self): | |
self.model_name = "facebook/opt-350m" | |
super().setUp() | |
def test_training(self): | |
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): | |
return | |
# Step 1: freeze all parameters | |
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) | |
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) | |
for param in model.parameters(): | |
param.requires_grad = False # freeze the model - train adapters later | |
if param.ndim == 1: | |
# cast the small parameters (e.g. layernorm) to fp32 for stability | |
param.data = param.data.to(torch.float32) | |
# Step 2: add adapters | |
for _, module in model.named_modules(): | |
if "OPTAttention" in repr(type(module)): | |
module.q_proj = LoRALayer(module.q_proj, rank=16) | |
module.k_proj = LoRALayer(module.k_proj, rank=16) | |
module.v_proj = LoRALayer(module.v_proj, rank=16) | |
# Step 3: dummy batch | |
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) | |
# Step 4: Check if the gradient is not None | |
with torch.cuda.amp.autocast(): | |
out = model.forward(**batch) | |
out.logits.norm().backward() | |
for module in model.modules(): | |
if isinstance(module, LoRALayer): | |
self.assertTrue(module.adapter[1].weight.grad is not None) | |
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) | |
elif isinstance(module, nn.Embedding): | |
self.assertTrue(module.weight.grad is None) | |
class Bnb4BitGPT2Test(Bnb4BitTest): | |
model_name = "gpt2-xl" | |
EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 | |