Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import hashlib | |
import unittest | |
from typing import Dict | |
import numpy as np | |
from transformers import ( | |
MODEL_FOR_MASK_GENERATION_MAPPING, | |
TF_MODEL_FOR_MASK_GENERATION_MAPPING, | |
is_vision_available, | |
pipeline, | |
) | |
from transformers.pipelines import MaskGenerationPipeline | |
from transformers.testing_utils import ( | |
is_pipeline_test, | |
nested_simplify, | |
require_tf, | |
require_torch, | |
require_vision, | |
slow, | |
) | |
if is_vision_available(): | |
from PIL import Image | |
else: | |
class Image: | |
def open(*args, **kwargs): | |
pass | |
def hashimage(image: Image) -> str: | |
m = hashlib.md5(image.tobytes()) | |
return m.hexdigest()[:10] | |
def mask_to_test_readable(mask: Image) -> Dict: | |
npimg = np.array(mask) | |
shape = npimg.shape | |
return {"hash": hashimage(mask), "shape": shape} | |
class MaskGenerationPipelineTests(unittest.TestCase): | |
model_mapping = dict( | |
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else []) | |
) | |
tf_model_mapping = dict( | |
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items()) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) | |
) | |
def get_test_pipeline(self, model, tokenizer, processor): | |
image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor) | |
return image_segmenter, [ | |
"./tests/fixtures/tests_samples/COCO/000000039769.png", | |
"./tests/fixtures/tests_samples/COCO/000000039769.png", | |
] | |
# TODO: Implement me @Arthur | |
def run_pipeline_test(self, mask_generator, examples): | |
pass | |
def test_small_model_tf(self): | |
pass | |
def test_small_model_pt(self): | |
image_segmenter = pipeline("mask-generation", model="facebook/sam-vit-huge") | |
outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=256) | |
# Shortening by hashing | |
new_outupt = [] | |
for i, o in enumerate(outputs["masks"]): | |
new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] | |
# fmt: off | |
self.assertEqual( | |
nested_simplify(new_outupt, decimals=4), | |
[ | |
{'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, | |
{'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, | |
{'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, | |
{'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, | |
{'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, | |
{'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, | |
{'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, | |
{'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, | |
{'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, | |
{'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, | |
{'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, | |
{'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, | |
{'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, | |
{'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, | |
{'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, | |
{'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, | |
{'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, | |
{'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, | |
{'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, | |
{'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, | |
{'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, | |
{'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, | |
{'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, | |
{'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, | |
{'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, | |
{'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, | |
{'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, | |
{'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, | |
{'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, | |
{'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} | |
], | |
) | |
# fmt: on | |
def test_threshold(self): | |
model_id = "facebook/sam-vit-huge" | |
image_segmenter = pipeline("mask-generation", model=model_id) | |
outputs = image_segmenter( | |
"http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=256 | |
) | |
# Shortening by hashing | |
new_outupt = [] | |
for i, o in enumerate(outputs["masks"]): | |
new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}] | |
self.assertEqual( | |
nested_simplify(new_outupt, decimals=4), | |
[ | |
{"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444}, | |
{"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0210}, | |
{"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167}, | |
{"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132}, | |
{"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053}, | |
], | |
) | |