Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import copy | |
import inspect | |
import math | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
import pytest | |
from transformers import is_tf_available | |
from transformers.testing_utils import is_pt_tf_cross_test, require_soundfile, require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import HubertConfig, TFHubertForCTC, TFHubertModel, Wav2Vec2Processor | |
from transformers.models.hubert.modeling_tf_hubert import _compute_mask_indices | |
class TFHubertModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=1024, | |
is_training=False, | |
hidden_size=16, | |
feat_extract_norm="group", | |
feat_extract_dropout=0.0, | |
feat_extract_activation="gelu", | |
conv_dim=(32, 32, 32), | |
conv_stride=(4, 4, 4), | |
conv_kernel=(8, 8, 8), | |
conv_bias=False, | |
num_conv_pos_embeddings=16, | |
num_conv_pos_embedding_groups=2, | |
num_hidden_layers=2, | |
num_attention_heads=2, | |
hidden_dropout_prob=0.1, # this is most likely not correctly set yet | |
intermediate_size=20, | |
layer_norm_eps=1e-5, | |
hidden_act="gelu", | |
initializer_range=0.02, | |
vocab_size=32, | |
do_stable_layer_norm=False, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.feat_extract_norm = feat_extract_norm | |
self.feat_extract_dropout = feat_extract_dropout | |
self.feat_extract_activation = feat_extract_activation | |
self.conv_dim = conv_dim | |
self.conv_stride = conv_stride | |
self.conv_kernel = conv_kernel | |
self.conv_bias = conv_bias | |
self.num_conv_pos_embeddings = num_conv_pos_embeddings | |
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.intermediate_size = intermediate_size | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.vocab_size = vocab_size | |
self.do_stable_layer_norm = do_stable_layer_norm | |
self.scope = scope | |
output_seq_length = self.seq_length | |
for kernel, stride in zip(self.conv_kernel, self.conv_stride): | |
output_seq_length = (output_seq_length - (kernel - 1)) / stride | |
self.output_seq_length = int(math.ceil(output_seq_length)) | |
self.encoder_seq_length = self.output_seq_length | |
def prepare_config_and_inputs(self): | |
input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0 | |
attention_mask = tf.ones_like(input_values) | |
config = HubertConfig( | |
hidden_size=self.hidden_size, | |
feat_extract_norm=self.feat_extract_norm, | |
feat_extract_dropout=self.feat_extract_dropout, | |
feat_extract_activation=self.feat_extract_activation, | |
conv_dim=self.conv_dim, | |
conv_stride=self.conv_stride, | |
conv_kernel=self.conv_kernel, | |
conv_bias=self.conv_bias, | |
num_conv_pos_embeddings=self.num_conv_pos_embeddings, | |
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
intermediate_size=self.intermediate_size, | |
layer_norm_eps=self.layer_norm_eps, | |
hidden_act=self.hidden_act, | |
initializer_range=self.initializer_range, | |
vocab_size=self.vocab_size, | |
do_stable_layer_norm=self.do_stable_layer_norm, | |
) | |
return config, input_values, attention_mask | |
def create_and_check_model(self, config, input_values, attention_mask): | |
model = TFHubertModel(config) | |
result = model(input_values, attention_mask=attention_mask) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) | |
) | |
def create_and_check_batch_inference(self, config, input_values, *args): | |
# test does not pass for models making use of `group_norm` | |
# check: https://github.com/pytorch/fairseq/issues/3227 | |
config.layerdrop = 0.0 | |
model = TFHubertModel(config) | |
input_values = input_values[:3] | |
attention_mask = tf.ones_like(input_values) | |
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) | |
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) | |
# convert values that are over input_lengths to padding | |
input_values = input_values * length_mask | |
attention_mask = attention_mask * length_mask | |
batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state | |
for i in range(input_values.shape[0]): | |
input_slice = input_values[i : i + 1, : input_lengths[i]] | |
output = model(input_slice, training=False).last_hidden_state | |
batch_output = batch_outputs[i : i + 1, : output.shape[1]] | |
self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3)) | |
def check_ctc_loss(self, config, input_values, *args): | |
model = TFHubertForCTC(config) | |
input_values = input_values[:3] | |
attention_mask = tf.ones_like(input_values) | |
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) | |
max_length_labels = model.hubert._get_feat_extract_output_lengths(input_lengths) | |
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) | |
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) | |
# convert values that are over input_lengths to padding | |
input_values = input_values * length_mask | |
attention_mask = attention_mask * length_mask | |
model.config.ctc_loss_reduction = "sum" | |
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss | |
model.config.ctc_loss_reduction = "mean" | |
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss | |
self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2) | |
def check_training(self, config, input_values, *args): | |
model = TFHubertForCTC(config) | |
# freeze feature encoder | |
model.freeze_feature_encoder() | |
input_values = input_values[:3] | |
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) | |
max_length_labels = model.hubert._get_feat_extract_output_lengths(input_lengths) | |
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) | |
length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32) | |
input_values = input_values * length_mask | |
pad_size = max(max_length_labels) - labels.shape[1] | |
labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100) | |
loss = model(input_values, labels=labels, training=True).loss | |
self.parent.assertFalse(tf.math.is_inf(loss)) | |
def check_labels_out_of_vocab(self, config, input_values, *args): | |
model = TFHubertForCTC(config) | |
input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]]) | |
max_length_labels = model.hubert._get_feat_extract_output_lengths(input_lengths) | |
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 100) | |
with pytest.raises(ValueError): | |
model(input_values, labels=labels) | |
def prepare_config_and_inputs_for_common(self): | |
config, input_values, attention_mask = self.prepare_config_and_inputs() | |
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} | |
return config, inputs_dict | |
class TFHubertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFHubertModel, TFHubertForCTC) if is_tf_available() else () | |
pipeline_model_mapping = {"feature-extraction": TFHubertModel} if is_tf_available() else {} | |
test_resize_embeddings = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFHubertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
# overwrite because input_values != input_ids | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.call) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["input_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
# overwrite because input_values != input_ids | |
def test_keyword_and_dict_args(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs_dict = model(inputs) | |
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
input_values = inputs_keywords.pop("input_values", None) | |
outputs_keywords = model(input_values, **inputs_keywords) | |
output_dict = outputs_dict[0].numpy() | |
output_keywords = outputs_keywords[0].numpy() | |
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_hidden_states_output(config, inputs_dict, model_class): | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
hidden_states = outputs.hidden_states | |
self.assertEqual(config.output_attentions, False) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.output_seq_length, self.model_tester.hidden_size], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
def test_ctc_loss_inference(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_ctc_loss(*config_and_inputs) | |
def test_train(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_training(*config_and_inputs) | |
def test_labels_out_of_vocab(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_labels_out_of_vocab(*config_and_inputs) | |
def test_inputs_embeds(self): | |
pass | |
def test_resize_tokens_embeddings(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_model_from_pretrained(self): | |
model = TFHubertModel.from_pretrained("facebook/hubert-base-ls960") | |
self.assertIsNotNone(model) | |
def test_dataset_conversion(self): | |
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC | |
pass | |
def test_keras_fit(self): | |
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC | |
pass | |
def test_pt_tf_model_equivalence(self, allow_missing_keys=False): | |
# We override the base test here to skip loss calculation for Hubert models because the loss is massive with | |
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT | |
import torch | |
import transformers | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Output all for aggressive testing | |
config.output_hidden_states = True | |
config.output_attentions = self.has_attentions | |
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency | |
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. | |
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. | |
self._make_attention_mask_non_null(inputs_dict) | |
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
tf_model = model_class(config) | |
pt_model = pt_model_class(config) | |
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
# Check we can load pt model in tf and vice-versa with model => model functions | |
tf_model = transformers.load_pytorch_model_in_tf2_model( | |
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys | |
) | |
pt_model = transformers.load_tf2_model_in_pytorch_model( | |
pt_model, tf_model, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
# Check we can load pt model in tf and vice-versa with checkpoint => model functions | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") | |
torch.save(pt_model.state_dict(), pt_checkpoint_path) | |
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( | |
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") | |
tf_model.save_weights(tf_checkpoint_path) | |
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( | |
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
class TFHubertRobustModelTest(TFModelTesterMixin, unittest.TestCase): | |
all_model_classes = (TFHubertModel, TFHubertForCTC) if is_tf_available() else () | |
test_resize_embeddings = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFHubertModelTester( | |
self, | |
conv_stride=(3, 3, 3), | |
feat_extract_norm="layer", | |
do_stable_layer_norm=True, | |
scope="robust", | |
) | |
self.config_tester = ConfigTester(self, config_class=HubertConfig, hidden_size=37) | |
# overwrite because input_values != input_ids | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.call) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["input_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
# overwrite because input_values != input_ids | |
def test_keyword_and_dict_args(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs_dict = model(inputs) | |
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
input_values = inputs_keywords.pop("input_values", None) | |
outputs_keywords = model(input_values, **inputs_keywords) | |
output_dict = outputs_dict[0].numpy() | |
output_keywords = outputs_keywords[0].numpy() | |
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_hidden_states_output(config, inputs_dict, model_class): | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
hidden_states = outputs.hidden_states | |
self.assertEqual(config.output_attentions, False) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.output_seq_length, self.model_tester.hidden_size], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
def test_batched_inference(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_batch_inference(*config_and_inputs) | |
def test_ctc_loss_inference(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_ctc_loss(*config_and_inputs) | |
def test_train(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_training(*config_and_inputs) | |
def test_labels_out_of_vocab(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.check_labels_out_of_vocab(*config_and_inputs) | |
def test_inputs_embeds(self): | |
pass | |
def test_resize_tokens_embeddings(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_model_from_pretrained(self): | |
model = TFHubertModel.from_pretrained("facebook/hubert-large-ls960-ft") | |
self.assertIsNotNone(model) | |
def test_dataset_conversion(self): | |
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC | |
pass | |
def test_keras_fit(self): | |
# TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC | |
pass | |
def test_pt_tf_model_equivalence(self, allow_missing_keys=False): | |
# We override the base test here to skip loss calculation for Hubert models because the loss is massive with | |
# the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT | |
import torch | |
import transformers | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Output all for aggressive testing | |
config.output_hidden_states = True | |
config.output_attentions = self.has_attentions | |
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency | |
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. | |
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. | |
self._make_attention_mask_non_null(inputs_dict) | |
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
tf_model = model_class(config) | |
pt_model = pt_model_class(config) | |
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
# Check we can load pt model in tf and vice-versa with model => model functions | |
tf_model = transformers.load_pytorch_model_in_tf2_model( | |
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys | |
) | |
pt_model = transformers.load_tf2_model_in_pytorch_model( | |
pt_model, tf_model, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
# Check we can load pt model in tf and vice-versa with checkpoint => model functions | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") | |
torch.save(pt_model.state_dict(), pt_checkpoint_path) | |
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( | |
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") | |
tf_model.save_weights(tf_checkpoint_path) | |
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( | |
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
class TFHubertUtilsTest(unittest.TestCase): | |
def test_compute_mask_indices(self): | |
batch_size = 4 | |
sequence_length = 60 | |
mask_prob = 0.5 | |
mask_length = 1 | |
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) | |
self.assertListEqual( | |
tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)] | |
) | |
def test_compute_mask_indices_overlap(self): | |
batch_size = 4 | |
sequence_length = 80 | |
mask_prob = 0.5 | |
mask_length = 4 | |
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) | |
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal | |
for batch_sum in tf.reduce_sum(mask, -1): | |
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) | |
class TFHubertModelIntegrationTest(unittest.TestCase): | |
def _load_datasamples(self, num_samples): | |
from datasets import load_dataset | |
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
# automatic decoding with librispeech | |
speech_samples = ds.sort("id").filter( | |
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] | |
)[:num_samples]["audio"] | |
return [x["array"] for x in speech_samples] | |
def test_inference_ctc_normal(self): | |
model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") | |
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True) | |
input_speech = self._load_datasamples(1) | |
input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values | |
logits = model(input_values).logits | |
predicted_ids = tf.argmax(logits, axis=-1) | |
predicted_trans = processor.batch_decode(predicted_ids) | |
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"] | |
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) | |
def test_inference_ctc_normal_batched(self): | |
model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") | |
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True) | |
input_speech = self._load_datasamples(2) | |
input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values | |
logits = model(input_values).logits | |
predicted_ids = tf.argmax(logits, axis=-1) | |
predicted_trans = processor.batch_decode(predicted_ids) | |
EXPECTED_TRANSCRIPTIONS = [ | |
"a man said to the universe sir i exist", | |
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", | |
] | |
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) | |
def test_inference_ctc_robust_batched(self): | |
model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") | |
processor = Wav2Vec2Processor.from_pretrained("facebook/hubert-large-ls960-ft", do_lower_case=True) | |
input_speech = self._load_datasamples(4) | |
inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000) | |
input_values = inputs.input_values | |
attention_mask = inputs.attention_mask | |
logits = model(input_values, attention_mask=attention_mask).logits | |
predicted_ids = tf.argmax(logits, axis=-1) | |
predicted_trans = processor.batch_decode(predicted_ids) | |
EXPECTED_TRANSCRIPTIONS = [ | |
"a man said to the universe sir i exist", | |
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore", | |
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around" | |
" him with the thousands of spectators were trivialities not worth thinking about", | |
"his instant of panic was followed by a small sharp blow high on his chest", | |
] | |
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS) | |