Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import unittest | |
from transformers import EsmConfig, is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import numpy | |
import tensorflow as tf | |
from transformers.models.esm.modeling_tf_esm import ( | |
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TFEsmForMaskedLM, | |
TFEsmForSequenceClassification, | |
TFEsmForTokenClassification, | |
TFEsmModel, | |
) | |
# copied from tests.test_modeling_tf_roberta | |
class TFEsmModelTester: | |
def __init__( | |
self, | |
parent, | |
): | |
self.parent = parent | |
self.batch_size = 13 | |
self.seq_length = 7 | |
self.is_training = True | |
self.use_input_mask = True | |
self.use_labels = True | |
self.vocab_size = 99 | |
self.hidden_size = 32 | |
self.num_hidden_layers = 2 | |
self.num_attention_heads = 4 | |
self.intermediate_size = 37 | |
self.hidden_act = "gelu" | |
self.hidden_dropout_prob = 0.1 | |
self.attention_probs_dropout_prob = 0.1 | |
self.max_position_embeddings = 512 | |
self.type_vocab_size = 16 | |
self.type_sequence_label_size = 2 | |
self.initializer_range = 0.02 | |
self.num_labels = 3 | |
self.num_choices = 4 | |
self.scope = None | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = EsmConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
pad_token_id=1, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def prepare_config_and_inputs_for_decoder(self): | |
( | |
config, | |
input_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = self.prepare_config_and_inputs() | |
config.is_decoder = True | |
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
return ( | |
config, | |
input_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): | |
model = TFEsmModel(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_model_as_decoder( | |
self, | |
config, | |
input_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
): | |
config.add_cross_attention = True | |
model = TFEsmModel(config=config) | |
inputs = { | |
"input_ids": input_ids, | |
"attention_mask": input_mask, | |
"encoder_hidden_states": encoder_hidden_states, | |
"encoder_attention_mask": encoder_attention_mask, | |
} | |
result = model(inputs) | |
inputs = [input_ids, input_mask] | |
result = model(inputs, encoder_hidden_states=encoder_hidden_states) | |
# Also check the case where encoder outputs are not passed | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
def create_and_check_for_masked_lm( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFEsmForMaskedLM(config=config) | |
result = model([input_ids, input_mask]) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFEsmForTokenClassification(config=config) | |
inputs = {"input_ids": input_ids, "attention_mask": input_mask} | |
result = model(inputs) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class TFEsmModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFEsmModel, | |
TFEsmForMaskedLM, | |
TFEsmForSequenceClassification, | |
TFEsmForTokenClassification, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": TFEsmModel, | |
"fill-mask": TFEsmForMaskedLM, | |
"text-classification": TFEsmForSequenceClassification, | |
"token-classification": TFEsmForTokenClassification, | |
"zero-shot": TFEsmForSequenceClassification, | |
} | |
if is_tf_available() | |
else {} | |
) | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFEsmModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
"""Test the base model""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_as_decoder(self): | |
"""Test the base model as a decoder (of an encoder-decoder architecture) | |
is_deocder=True + cross_attention + pass encoder outputs | |
""" | |
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
def test_for_masked_lm(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFEsmModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_resize_token_embeddings(self): | |
pass | |
def test_save_load_after_resize_token_embeddings(self): | |
pass | |
def test_model_common_attributes(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
if model_class is TFEsmForMaskedLM: | |
# Output embedding test differs from the main test because they're a matrix, not a layer | |
name = model.get_bias() | |
assert isinstance(name, dict) | |
for k, v in name.items(): | |
assert isinstance(v, tf.Variable) | |
else: | |
x = model.get_output_embeddings() | |
assert x is None | |
name = model.get_bias() | |
assert name is None | |
class TFEsmModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D") | |
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) | |
output = model(input_ids)[0] | |
expected_shape = [1, 6, 33] | |
self.assertEqual(list(output.numpy().shape), expected_shape) | |
# compare the actual values for a slice. | |
expected_slice = tf.constant( | |
[ | |
[ | |
[8.921518, -10.589814, -6.4671307], | |
[-6.3967156, -13.911377, -1.1211915], | |
[-7.781247, -13.951557, -3.740592], | |
] | |
] | |
) | |
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-2)) | |
def test_inference_no_head(self): | |
model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D") | |
input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) | |
output = model(input_ids)[0] | |
# compare the actual values for a slice. | |
expected_slice = tf.constant( | |
[ | |
[ | |
[0.14443092, 0.54125327, 0.3247739], | |
[0.30340484, 0.00526676, 0.31077722], | |
[0.32278043, -0.24987096, 0.3414628], | |
] | |
] | |
) | |
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4)) | |