Spaces:
Runtime error
Runtime error
import unittest | |
import numpy as np | |
from transformers import ElectraConfig, is_flax_available | |
from transformers.testing_utils import require_flax, slow | |
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask | |
if is_flax_available(): | |
from transformers.models.electra.modeling_flax_electra import ( | |
FlaxElectraForCausalLM, | |
FlaxElectraForMaskedLM, | |
FlaxElectraForMultipleChoice, | |
FlaxElectraForPreTraining, | |
FlaxElectraForQuestionAnswering, | |
FlaxElectraForSequenceClassification, | |
FlaxElectraForTokenClassification, | |
FlaxElectraModel, | |
) | |
class FlaxElectraModelTester(unittest.TestCase): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_attention_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
embedding_size=24, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_choices=4, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.embedding_size = embedding_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_choices = num_choices | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
attention_mask = None | |
if self.use_attention_mask: | |
attention_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
config = ElectraConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
embedding_size=self.embedding_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
) | |
return config, input_ids, token_type_ids, attention_mask | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, token_type_ids, attention_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} | |
return config, inputs_dict | |
class FlaxElectraModelTest(FlaxModelTesterMixin, unittest.TestCase): | |
test_head_masking = True | |
all_model_classes = ( | |
( | |
FlaxElectraModel, | |
FlaxElectraForCausalLM, | |
FlaxElectraForMaskedLM, | |
FlaxElectraForPreTraining, | |
FlaxElectraForTokenClassification, | |
FlaxElectraForQuestionAnswering, | |
FlaxElectraForMultipleChoice, | |
FlaxElectraForSequenceClassification, | |
) | |
if is_flax_available() | |
else () | |
) | |
def setUp(self): | |
self.model_tester = FlaxElectraModelTester(self) | |
def test_model_from_pretrained(self): | |
for model_class_name in self.all_model_classes: | |
if model_class_name == FlaxElectraForMaskedLM: | |
model = model_class_name.from_pretrained("google/electra-small-generator") | |
else: | |
model = model_class_name.from_pretrained("google/electra-small-discriminator") | |
outputs = model(np.ones((1, 1))) | |
self.assertIsNotNone(outputs) | |