Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Bark model. """ | |
import copy | |
import inspect | |
import tempfile | |
import unittest | |
from transformers import ( | |
BarkCoarseConfig, | |
BarkConfig, | |
BarkFineConfig, | |
BarkSemanticConfig, | |
is_torch_available, | |
) | |
from transformers.models.bark.generation_configuration_bark import ( | |
BarkCoarseGenerationConfig, | |
BarkFineGenerationConfig, | |
BarkSemanticGenerationConfig, | |
) | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from transformers.utils import cached_property | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ..encodec.test_modeling_encodec import EncodecModelTester | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
BarkCausalModel, | |
BarkCoarseModel, | |
BarkFineModel, | |
BarkModel, | |
BarkProcessor, | |
BarkSemanticModel, | |
) | |
class BarkSemanticModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
seq_length=4, | |
is_training=False, # for now training is not supported | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=33, | |
output_vocab_size=33, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=2, | |
intermediate_size=15, | |
dropout=0.1, | |
window_size=256, | |
initializer_range=0.02, | |
n_codes_total=8, # for BarkFineModel | |
n_codes_given=1, # for BarkFineModel | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.output_vocab_size = output_vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.window_size = window_size | |
self.initializer_range = initializer_range | |
self.bos_token_id = output_vocab_size - 1 | |
self.eos_token_id = output_vocab_size - 1 | |
self.pad_token_id = output_vocab_size - 1 | |
self.n_codes_total = n_codes_total | |
self.n_codes_given = n_codes_given | |
self.is_encoder_decoder = False | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
inputs_dict = { | |
"input_ids": input_ids, | |
"head_mask": head_mask, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
def get_config(self): | |
return BarkSemanticConfig( | |
vocab_size=self.vocab_size, | |
output_vocab_size=self.output_vocab_size, | |
hidden_size=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
num_heads=self.num_attention_heads, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
window_size=self.window_size, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
config.output_vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = BarkSemanticModel(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"logits" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
# test no attention_mask works | |
outputs = model(input_ids, use_cache=True) | |
_, past_key_values = outputs.to_tuple() | |
output_from_no_past = model(next_input_ids)["logits"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
class BarkCoarseModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
seq_length=4, | |
is_training=False, # for now training is not supported | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=33, | |
output_vocab_size=33, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=2, | |
intermediate_size=15, | |
dropout=0.1, | |
window_size=256, | |
initializer_range=0.02, | |
n_codes_total=8, # for BarkFineModel | |
n_codes_given=1, # for BarkFineModel | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.output_vocab_size = output_vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.window_size = window_size | |
self.initializer_range = initializer_range | |
self.bos_token_id = output_vocab_size - 1 | |
self.eos_token_id = output_vocab_size - 1 | |
self.pad_token_id = output_vocab_size - 1 | |
self.n_codes_total = n_codes_total | |
self.n_codes_given = n_codes_given | |
self.is_encoder_decoder = False | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
inputs_dict = { | |
"input_ids": input_ids, | |
"head_mask": head_mask, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
def get_config(self): | |
return BarkCoarseConfig( | |
vocab_size=self.vocab_size, | |
output_vocab_size=self.output_vocab_size, | |
hidden_size=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
num_heads=self.num_attention_heads, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
window_size=self.window_size, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
config.output_vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = BarkCoarseModel(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"logits" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
# test no attention_mask works | |
outputs = model(input_ids, use_cache=True) | |
_, past_key_values = outputs.to_tuple() | |
output_from_no_past = model(next_input_ids)["logits"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
class BarkFineModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
seq_length=4, | |
is_training=False, # for now training is not supported | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=33, | |
output_vocab_size=33, | |
hidden_size=16, | |
num_hidden_layers=2, | |
num_attention_heads=2, | |
intermediate_size=15, | |
dropout=0.1, | |
window_size=256, | |
initializer_range=0.02, | |
n_codes_total=8, # for BarkFineModel | |
n_codes_given=1, # for BarkFineModel | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.output_vocab_size = output_vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.window_size = window_size | |
self.initializer_range = initializer_range | |
self.bos_token_id = output_vocab_size - 1 | |
self.eos_token_id = output_vocab_size - 1 | |
self.pad_token_id = output_vocab_size - 1 | |
self.n_codes_total = n_codes_total | |
self.n_codes_given = n_codes_given | |
self.is_encoder_decoder = False | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length, self.n_codes_total], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
config = self.get_config() | |
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) | |
# randint between self.n_codes_given - 1 and self.n_codes_total - 1 | |
codebook_idx = ids_tensor((1,), self.n_codes_total - self.n_codes_given).item() + self.n_codes_given | |
inputs_dict = { | |
"codebook_idx": codebook_idx, | |
"input_ids": input_ids, | |
"head_mask": head_mask, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
def get_config(self): | |
return BarkFineConfig( | |
vocab_size=self.vocab_size, | |
output_vocab_size=self.output_vocab_size, | |
hidden_size=self.hidden_size, | |
num_layers=self.num_hidden_layers, | |
num_heads=self.num_attention_heads, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
window_size=self.window_size, | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
config.vocab_size = 300 | |
config.output_vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_common(self): | |
config, inputs_dict = self.prepare_config_and_inputs() | |
return config, inputs_dict | |
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
model = BarkFineModel(config=config).to(torch_device).eval() | |
input_ids = inputs_dict["input_ids"] | |
attention_mask = inputs_dict["attention_mask"] | |
# first forward pass | |
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) | |
output, past_key_values = outputs.to_tuple() | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
"logits" | |
] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
# test no attention_mask works | |
outputs = model(input_ids, use_cache=True) | |
_, past_key_values = outputs.to_tuple() | |
output_from_no_past = model(next_input_ids)["logits"] | |
output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
class BarkModelTester: | |
def __init__( | |
self, | |
parent, | |
semantic_kwargs=None, | |
coarse_acoustics_kwargs=None, | |
fine_acoustics_kwargs=None, | |
codec_kwargs=None, | |
is_training=False, # for now training is not supported | |
): | |
if semantic_kwargs is None: | |
semantic_kwargs = {} | |
if coarse_acoustics_kwargs is None: | |
coarse_acoustics_kwargs = {} | |
if fine_acoustics_kwargs is None: | |
fine_acoustics_kwargs = {} | |
if codec_kwargs is None: | |
codec_kwargs = {} | |
self.parent = parent | |
self.semantic_model_tester = BarkSemanticModelTester(parent, **semantic_kwargs) | |
self.coarse_acoustics_model_tester = BarkCoarseModelTester(parent, **coarse_acoustics_kwargs) | |
self.fine_acoustics_model_tester = BarkFineModelTester(parent, **fine_acoustics_kwargs) | |
self.codec_model_tester = EncodecModelTester(parent, **codec_kwargs) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
# TODO: @Yoach: Preapre `inputs_dict` | |
inputs_dict = {} | |
config = self.get_config() | |
return config, inputs_dict | |
def get_config(self): | |
return BarkConfig.from_sub_model_configs( | |
self.semantic_model_tester.get_config(), | |
self.coarse_acoustics_model_tester.get_config(), | |
self.fine_acoustics_model_tester.get_config(), | |
self.codec_model_tester.get_config(), | |
) | |
def get_pipeline_config(self): | |
config = self.get_config() | |
# follow the `get_pipeline_config` of the sub component models | |
config.semantic_config.vocab_size = 300 | |
config.coarse_acoustics_config.vocab_size = 300 | |
config.fine_acoustics_config.vocab_size = 300 | |
config.semantic_config.output_vocab_size = 300 | |
config.coarse_acoustics_config.output_vocab_size = 300 | |
config.fine_acoustics_config.output_vocab_size = 300 | |
return config | |
def prepare_config_and_inputs_for_common(self): | |
# TODO: @Yoach | |
pass | |
# return config, inputs_dict | |
# Need this class in oder to create tiny model for `bark` | |
# TODO (@Yoach) Implement actual test methods | |
class BarkModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
all_model_classes = (BarkModel,) if is_torch_available() else () | |
def setUp(self): | |
self.model_tester = BarkModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BarkConfig, n_embd=37) | |
class BarkSemanticModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
all_model_classes = (BarkSemanticModel,) if is_torch_available() else () | |
all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () | |
is_encoder_decoder = False | |
fx_compatible = False | |
test_missing_keys = False | |
test_pruning = False | |
test_model_parallel = False | |
# no model_parallel for now | |
test_resize_embeddings = True | |
def setUp(self): | |
self.model_tester = BarkSemanticModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BarkSemanticConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
wte = model.get_input_embeddings() | |
inputs["input_embeds"] = wte(input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = self.all_generative_model_classes[0](config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
class BarkCoarseModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
# Same tester as BarkSemanticModelTest, except for model_class and config_class | |
all_model_classes = (BarkCoarseModel,) if is_torch_available() else () | |
all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () | |
is_encoder_decoder = False | |
fx_compatible = False | |
test_missing_keys = False | |
test_pruning = False | |
test_model_parallel = False | |
# no model_parallel for now | |
test_resize_embeddings = True | |
def setUp(self): | |
self.model_tester = BarkCoarseModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BarkCoarseConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_decoder_model_past_with_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
wte = model.get_input_embeddings() | |
inputs["input_embeds"] = wte(input_ids) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
attention_mask = input_ids.ne(1).to(torch_device) | |
model = self.all_generative_model_classes[0](config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
model.generate(input_ids, attention_mask=attention_mask) | |
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
class BarkFineModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (BarkFineModel,) if is_torch_available() else () | |
is_encoder_decoder = False | |
fx_compatible = False | |
test_missing_keys = False | |
test_pruning = False | |
# no model_parallel for now | |
test_model_parallel = False | |
# torchscript disabled for now because forward with an int | |
test_torchscript = False | |
test_resize_embeddings = True | |
def setUp(self): | |
self.model_tester = BarkFineModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BarkFineConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_save_load_strict(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
self.assertEqual(info["missing_keys"], []) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
wte = model.get_input_embeddings()[inputs_dict["codebook_idx"]] | |
inputs["input_embeds"] = wte(input_ids[:, :, inputs_dict["codebook_idx"]]) | |
with torch.no_grad(): | |
model(**inputs)[0] | |
def test_generate_fp16(self): | |
config, input_dict = self.model_tester.prepare_config_and_inputs() | |
input_ids = input_dict["input_ids"] | |
# take first codebook channel | |
model = self.all_model_classes[0](config).eval().to(torch_device) | |
if torch_device == "cuda": | |
model.half() | |
# toy generation_configs | |
semantic_generation_config = BarkSemanticGenerationConfig(semantic_vocab_size=0) | |
coarse_generation_config = BarkCoarseGenerationConfig(n_coarse_codebooks=config.n_codes_given) | |
fine_generation_config = BarkFineGenerationConfig( | |
max_fine_history_length=config.block_size // 2, | |
max_fine_input_length=config.block_size, | |
n_fine_codebooks=config.n_codes_total, | |
) | |
codebook_size = config.vocab_size - 1 | |
model.generate( | |
input_ids, | |
history_prompt=None, | |
temperature=None, | |
semantic_generation_config=semantic_generation_config, | |
coarse_generation_config=coarse_generation_config, | |
fine_generation_config=fine_generation_config, | |
codebook_size=codebook_size, | |
) | |
model.generate( | |
input_ids, | |
history_prompt=None, | |
temperature=0.7, | |
semantic_generation_config=semantic_generation_config, | |
coarse_generation_config=coarse_generation_config, | |
fine_generation_config=fine_generation_config, | |
codebook_size=codebook_size, | |
) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["codebook_idx", "input_ids"] | |
self.assertListEqual(arg_names[:2], expected_arg_names) | |
def test_model_common_attributes(self): | |
# one embedding layer per codebook | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings()[0], (torch.nn.Embedding)) | |
model.set_input_embeddings( | |
torch.nn.ModuleList([torch.nn.Embedding(10, 10) for _ in range(config.n_codes_total)]) | |
) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x[0], torch.nn.Linear)) | |
def test_resize_tokens_embeddings(self): | |
# resizing tokens_embeddings of a ModuleList | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config) | |
model.to(torch_device) | |
if self.model_tester.is_training is False: | |
model.eval() | |
model_vocab_size = config.vocab_size | |
# Retrieve the embeddings and clone theme | |
model_embed_list = model.resize_token_embeddings(model_vocab_size) | |
cloned_embeddings_list = [model_embed.weight.clone() for model_embed in model_embed_list] | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_embed_list = model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
# Check that it actually resizes the embeddings matrix for each codebook | |
for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model_embed_list = model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): | |
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Input ids should be clamped to the maximum size of the vocabulary | |
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that adding and removing tokens has not modified the first part of the embedding matrix. | |
# only check for the first embedding matrix | |
models_equal = True | |
for p1, p2 in zip(cloned_embeddings_list[0], model_embed_list[0].weight): | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_resize_embeddings_untied(self): | |
# resizing tokens_embeddings of a ModuleList | |
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
if not self.test_resize_embeddings: | |
return | |
original_config.tie_word_embeddings = False | |
for model_class in self.all_model_classes: | |
config = copy.deepcopy(original_config) | |
model = model_class(config).to(torch_device) | |
# if no output embeddings -> leave test | |
if model.get_output_embeddings() is None: | |
continue | |
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size | |
model_vocab_size = config.vocab_size | |
model.resize_token_embeddings(model_vocab_size + 10) | |
self.assertEqual(model.config.vocab_size, model_vocab_size + 10) | |
output_embeds_list = model.get_output_embeddings() | |
for output_embeds in output_embeds_list: | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size | |
model.resize_token_embeddings(model_vocab_size - 15) | |
self.assertEqual(model.config.vocab_size, model_vocab_size - 15) | |
# Check that it actually resizes the embeddings matrix | |
output_embeds_list = model.get_output_embeddings() | |
for output_embeds in output_embeds_list: | |
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) | |
# Check bias if present | |
if output_embeds.bias is not None: | |
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
# Input ids should be clamped to the maximum size of the vocabulary | |
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) | |
# Check that the model can still do a forward pass successfully (every parameter should be resized) | |
model(**self._prepare_for_class(inputs_dict, model_class)) | |
class BarkModelIntegrationTests(unittest.TestCase): | |
def model(self): | |
return BarkModel.from_pretrained("suno/bark").to(torch_device) | |
def processor(self): | |
return BarkProcessor.from_pretrained("suno/bark") | |
def inputs(self): | |
input_ids = self.processor("In the light of the moon, a little egg lay on a leaf", voice_preset="en_speaker_6") | |
input_ids = input_ids.to(torch_device) | |
return input_ids | |
def semantic_generation_config(self): | |
semantic_generation_config = BarkSemanticGenerationConfig(**self.model.generation_config.semantic_config) | |
return semantic_generation_config | |
def coarse_generation_config(self): | |
coarse_generation_config = BarkCoarseGenerationConfig(**self.model.generation_config.coarse_acoustics_config) | |
return coarse_generation_config | |
def fine_generation_config(self): | |
fine_generation_config = BarkFineGenerationConfig(**self.model.generation_config.fine_acoustics_config) | |
return fine_generation_config | |
def test_generate_semantic(self): | |
input_ids = self.inputs | |
# fmt: off | |
# check first ids | |
expected_output_ids = [7363, 321, 41, 1461, 6915, 952, 326, 41, 41, 927,] | |
# fmt: on | |
# greedy decoding | |
with torch.no_grad(): | |
output_ids = self.model.semantic.generate( | |
**input_ids, | |
do_sample=False, | |
temperature=1.0, | |
semantic_generation_config=self.semantic_generation_config, | |
) | |
self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) | |
def test_generate_coarse(self): | |
input_ids = self.inputs | |
history_prompt = input_ids["history_prompt"] | |
# fmt: off | |
# check first ids | |
expected_output_ids = [11018, 11391, 10651, 11418, 10857, 11620, 10642, 11366, 10312, 11528, 10531, 11516, 10474, 11051, 10524, 11051, ] | |
# fmt: on | |
with torch.no_grad(): | |
output_ids = self.model.semantic.generate( | |
**input_ids, | |
do_sample=False, | |
temperature=1.0, | |
semantic_generation_config=self.semantic_generation_config, | |
) | |
output_ids = self.model.coarse_acoustics.generate( | |
output_ids, | |
history_prompt=history_prompt, | |
do_sample=False, | |
temperature=1.0, | |
semantic_generation_config=self.semantic_generation_config, | |
coarse_generation_config=self.coarse_generation_config, | |
codebook_size=self.model.generation_config.codebook_size, | |
) | |
self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) | |
def test_generate_fine(self): | |
input_ids = self.inputs | |
history_prompt = input_ids["history_prompt"] | |
# fmt: off | |
expected_output_ids = [ | |
[1018, 651, 857, 642, 312, 531, 474, 524, 524, 776,], | |
[367, 394, 596, 342, 504, 492, 27, 27, 822, 822,], | |
[961, 955, 221, 955, 955, 686, 939, 939, 479, 176,], | |
[638, 365, 218, 944, 853, 363, 639, 22, 884, 456,], | |
[302, 912, 524, 38, 174, 209, 879, 23, 910, 227,], | |
[440, 673, 861, 666, 372, 558, 49, 172, 232, 342,], | |
[244, 358, 123, 356, 586, 520, 499, 877, 542, 637,], | |
[806, 685, 905, 848, 803, 810, 921, 208, 625, 203,], | |
] | |
# fmt: on | |
with torch.no_grad(): | |
output_ids = self.model.semantic.generate( | |
**input_ids, | |
do_sample=False, | |
temperature=1.0, | |
semantic_generation_config=self.semantic_generation_config, | |
) | |
output_ids = self.model.coarse_acoustics.generate( | |
output_ids, | |
history_prompt=history_prompt, | |
do_sample=False, | |
temperature=1.0, | |
semantic_generation_config=self.semantic_generation_config, | |
coarse_generation_config=self.coarse_generation_config, | |
codebook_size=self.model.generation_config.codebook_size, | |
) | |
# greedy decoding | |
output_ids = self.model.fine_acoustics.generate( | |
output_ids, | |
history_prompt=history_prompt, | |
temperature=None, | |
semantic_generation_config=self.semantic_generation_config, | |
coarse_generation_config=self.coarse_generation_config, | |
fine_generation_config=self.fine_generation_config, | |
codebook_size=self.model.generation_config.codebook_size, | |
) | |
self.assertListEqual(output_ids[0, :, : len(expected_output_ids[0])].tolist(), expected_output_ids) | |
def test_generate_end_to_end(self): | |
input_ids = self.inputs | |
with torch.no_grad(): | |
self.model.generate(**input_ids) | |
self.model.generate(**{key: val for (key, val) in input_ids.items() if key != "history_prompt"}) | |
def test_generate_end_to_end_with_args(self): | |
input_ids = self.inputs | |
with torch.no_grad(): | |
self.model.generate(**input_ids, do_sample=True, temperature=0.6, penalty_alpha=0.6) | |
self.model.generate(**input_ids, do_sample=True, temperature=0.6, num_beams=4) | |
def test_generate_end_to_end_with_sub_models_args(self): | |
input_ids = self.inputs | |
with torch.no_grad(): | |
self.model.generate( | |
**input_ids, do_sample=False, temperature=1.0, coarse_do_sample=True, coarse_temperature=0.7 | |
) | |
self.model.generate( | |
**input_ids, | |
do_sample=False, | |
temperature=1.0, | |
coarse_do_sample=True, | |
coarse_temperature=0.7, | |
fine_temperature=0.3, | |
) | |
self.model.generate( | |
**input_ids, | |
do_sample=True, | |
temperature=0.6, | |
penalty_alpha=0.6, | |
semantic_temperature=0.9, | |
coarse_temperature=0.2, | |
fine_temperature=0.1, | |
) | |
def test_generate_end_to_end_with_offload(self): | |
input_ids = self.inputs | |
with torch.no_grad(): | |
# standard generation | |
output_with_no_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) | |
torch.cuda.empty_cache() | |
memory_before_offload = torch.cuda.memory_allocated() | |
model_memory_footprint = self.model.get_memory_footprint() | |
# activate cpu offload | |
self.model.enable_cpu_offload() | |
memory_after_offload = torch.cuda.memory_allocated() | |
# checks if the model have been offloaded | |
# CUDA memory usage after offload should be near 0, leaving room to small differences | |
room_for_difference = 1.1 | |
self.assertGreater( | |
(memory_before_offload - model_memory_footprint) * room_for_difference, memory_after_offload | |
) | |
# checks if device is the correct one | |
self.assertEqual(self.model.device.type, torch_device) | |
# checks if hooks exist | |
self.assertTrue(hasattr(self.model.semantic, "_hf_hook")) | |
# output with cpu offload | |
output_with_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) | |
# checks if same output | |
self.assertListEqual(output_with_no_offload.tolist(), output_with_offload.tolist()) | |