Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import tempfile | |
import unittest | |
import numpy as np | |
from transformers import LxmertConfig, is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers.models.lxmert.modeling_tf_lxmert import TFLxmertForPreTraining, TFLxmertModel | |
class TFLxmertModelTester(object): | |
def __init__( | |
self, | |
parent, | |
vocab_size=300, | |
hidden_size=28, | |
num_attention_heads=2, | |
num_labels=2, | |
intermediate_size=64, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=2, | |
initializer_range=0.02, | |
layer_norm_eps=1e-12, | |
pad_token_id=0, | |
num_qa_labels=30, | |
num_object_labels=16, | |
num_attr_labels=4, | |
num_visual_features=10, | |
l_layers=2, | |
x_layers=1, | |
r_layers=1, | |
visual_feat_dim=128, | |
visual_pos_dim=4, | |
visual_loss_normalizer=6.67, | |
seq_length=20, | |
batch_size=8, | |
is_training=True, | |
task_matched=True, | |
task_mask_lm=True, | |
task_obj_predict=True, | |
task_qa=True, | |
visual_obj_loss=True, | |
visual_attr_loss=True, | |
visual_feat_loss=True, | |
use_token_type_ids=True, | |
use_lang_mask=True, | |
output_attentions=False, | |
output_hidden_states=False, | |
scope=None, | |
): | |
self.parent = parent | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_attention_heads = num_attention_heads | |
self.num_labels = num_labels | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.pad_token_id = pad_token_id | |
self.num_qa_labels = num_qa_labels | |
self.num_object_labels = num_object_labels | |
self.num_attr_labels = num_attr_labels | |
self.l_layers = l_layers | |
self.x_layers = x_layers | |
self.r_layers = r_layers | |
self.visual_feat_dim = visual_feat_dim | |
self.visual_pos_dim = visual_pos_dim | |
self.visual_loss_normalizer = visual_loss_normalizer | |
self.seq_length = seq_length | |
self.batch_size = batch_size | |
self.is_training = is_training | |
self.use_lang_mask = use_lang_mask | |
self.task_matched = task_matched | |
self.task_mask_lm = task_mask_lm | |
self.task_obj_predict = task_obj_predict | |
self.task_qa = task_qa | |
self.visual_obj_loss = visual_obj_loss | |
self.visual_attr_loss = visual_attr_loss | |
self.visual_feat_loss = visual_feat_loss | |
self.num_visual_features = num_visual_features | |
self.use_token_type_ids = use_token_type_ids | |
self.output_attentions = output_attentions | |
self.output_hidden_states = output_hidden_states | |
self.scope = scope | |
self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} | |
def prepare_config_and_inputs(self): | |
output_attentions = self.output_attentions | |
input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size) | |
visual_feats = tf.random.uniform((self.batch_size, self.num_visual_features, self.visual_feat_dim)) | |
bounding_boxes = tf.random.uniform((self.batch_size, self.num_visual_features, 4)) | |
input_mask = None | |
if self.use_lang_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
obj_labels = None | |
if self.task_obj_predict: | |
obj_labels = {} | |
if self.visual_attr_loss and self.task_obj_predict: | |
obj_labels["attr"] = ( | |
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), | |
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels), | |
) | |
if self.visual_feat_loss and self.task_obj_predict: | |
obj_labels["feat"] = ( | |
ids_tensor( | |
[self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features | |
), | |
ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features), | |
) | |
if self.visual_obj_loss and self.task_obj_predict: | |
obj_labels["obj"] = ( | |
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), | |
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels), | |
) | |
ans = None | |
if self.task_qa: | |
ans = ids_tensor([self.batch_size], self.num_qa_labels) | |
masked_lm_labels = None | |
if self.task_mask_lm: | |
masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
matched_label = None | |
if self.task_matched: | |
matched_label = ids_tensor([self.batch_size], self.num_labels) | |
config = LxmertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_attention_heads=self.num_attention_heads, | |
num_labels=self.num_labels, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
layer_norm_eps=self.layer_norm_eps, | |
pad_token_id=self.pad_token_id, | |
num_qa_labels=self.num_qa_labels, | |
num_object_labels=self.num_object_labels, | |
num_attr_labels=self.num_attr_labels, | |
l_layers=self.l_layers, | |
x_layers=self.x_layers, | |
r_layers=self.r_layers, | |
visual_feat_dim=self.visual_feat_dim, | |
visual_pos_dim=self.visual_pos_dim, | |
visual_loss_normalizer=self.visual_loss_normalizer, | |
task_matched=self.task_matched, | |
task_mask_lm=self.task_mask_lm, | |
task_obj_predict=self.task_obj_predict, | |
task_qa=self.task_qa, | |
visual_obj_loss=self.visual_obj_loss, | |
visual_attr_loss=self.visual_attr_loss, | |
visual_feat_loss=self.visual_feat_loss, | |
output_attentions=self.output_attentions, | |
output_hidden_states=self.output_hidden_states, | |
) | |
return ( | |
config, | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids, | |
input_mask, | |
obj_labels, | |
masked_lm_labels, | |
matched_label, | |
ans, | |
output_attentions, | |
) | |
def create_and_check_lxmert_model( | |
self, | |
config, | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids, | |
input_mask, | |
obj_labels, | |
masked_lm_labels, | |
matched_label, | |
ans, | |
output_attentions, | |
): | |
model = TFLxmertModel(config=config) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
output_attentions=output_attentions, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
output_attentions=not output_attentions, | |
) | |
result = model(input_ids, visual_feats, bounding_boxes, return_dict=False) | |
result = model(input_ids, visual_feats, bounding_boxes, return_dict=True) | |
self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual( | |
result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size) | |
) | |
self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size)) | |
def prepare_config_and_inputs_for_common(self, return_obj_labels=False): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids, | |
input_mask, | |
obj_labels, | |
masked_lm_labels, | |
matched_label, | |
ans, | |
output_attentions, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"visual_feats": visual_feats, | |
"visual_pos": bounding_boxes, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
if return_obj_labels: | |
inputs_dict["obj_labels"] = obj_labels | |
else: | |
config.task_obj_predict = False | |
return config, inputs_dict | |
def create_and_check_lxmert_for_pretraining( | |
self, | |
config, | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids, | |
input_mask, | |
obj_labels, | |
masked_lm_labels, | |
matched_label, | |
ans, | |
output_attentions, | |
): | |
model = TFLxmertForPreTraining(config=config) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
masked_lm_labels=masked_lm_labels, | |
obj_labels=obj_labels, | |
matched_label=matched_label, | |
ans=ans, | |
output_attentions=output_attentions, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
masked_lm_labels=masked_lm_labels, | |
output_attentions=not output_attentions, | |
return_dict=False, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
masked_lm_labels=masked_lm_labels, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
obj_labels=obj_labels, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
matched_label=matched_label, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
ans=ans, | |
) | |
result = model( | |
input_ids, | |
visual_feats, | |
bounding_boxes, | |
token_type_ids=token_type_ids, | |
attention_mask=input_mask, | |
masked_lm_labels=masked_lm_labels, | |
obj_labels=obj_labels, | |
matched_label=matched_label, | |
ans=ans, | |
output_attentions=not output_attentions, | |
) | |
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
class TFLxmertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (TFLxmertModel, TFLxmertForPreTraining) if is_tf_available() else () | |
pipeline_model_mapping = {"feature-extraction": TFLxmertModel} if is_tf_available() else {} | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFLxmertModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_lxmert_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lxmert_model(*config_and_inputs) | |
def test_lxmert_for_pretraining(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in ["unc-nlp/lxmert-base-uncased"]: | |
model = TFLxmertModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
encoder_seq_length = ( | |
self.model_tester.encoder_seq_length | |
if hasattr(self.model_tester, "encoder_seq_length") | |
else self.model_tester.seq_length | |
) | |
encoder_key_length = ( | |
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) | |
self.assertEqual(model.config.output_hidden_states, False) | |
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) | |
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) | |
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) | |
attentions = [language_attentions, vision_attentions, cross_encoder_attentions] | |
attention_shapes = [ | |
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
[ | |
self.model_tester.num_attention_heads, | |
self.model_tester.num_visual_features, | |
self.model_tester.num_visual_features, | |
], | |
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], | |
] | |
for attention, attention_shape in zip(attentions, attention_shapes): | |
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) | |
out_len = len(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
# 2 hidden states were added | |
self.assertEqual(out_len + 2, len(outputs)) | |
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1]) | |
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) | |
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) | |
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"]) | |
attentions = [language_attentions, vision_attentions, cross_encoder_attentions] | |
attention_shapes = [ | |
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
[ | |
self.model_tester.num_attention_heads, | |
self.model_tester.num_visual_features, | |
self.model_tester.num_visual_features, | |
], | |
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features], | |
] | |
for attention, attention_shape in zip(attentions, attention_shapes): | |
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape) | |
def test_hidden_states_output(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_hidden_states_output(config, inputs_dict, model_class): | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1] | |
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) | |
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) | |
seq_length = self.model_tester.seq_length | |
num_visual_features = self.model_tester.num_visual_features | |
self.assertListEqual( | |
list(language_hidden_states[0].shape[-2:]), | |
[seq_length, self.model_tester.hidden_size], | |
) | |
self.assertListEqual( | |
list(vision_hidden_states[0].shape[-2:]), | |
[num_visual_features, self.model_tester.hidden_size], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict): | |
import torch | |
pt_inputs_dict = {} | |
for key, value in tf_inputs_dict.items(): | |
if isinstance(value, dict): | |
pt_inputs_dict[key] = self.prepare_pt_inputs_from_tf_inputs(value) | |
elif isinstance(value, (list, tuple)): | |
pt_inputs_dict[key] = (self.prepare_pt_inputs_from_tf_inputs(iter_value) for iter_value in value) | |
elif type(key) == bool: | |
pt_inputs_dict[key] = value | |
elif key == "input_values": | |
pt_inputs_dict[key] = torch.from_numpy(value.numpy()).to(torch.float32) | |
elif key == "pixel_values": | |
pt_inputs_dict[key] = torch.from_numpy(value.numpy()).to(torch.float32) | |
elif key == "input_features": | |
pt_inputs_dict[key] = torch.from_numpy(value.numpy()).to(torch.float32) | |
# other general float inputs | |
elif tf_inputs_dict[key].dtype.is_floating: | |
pt_inputs_dict[key] = torch.from_numpy(value.numpy()).to(torch.float32) | |
else: | |
pt_inputs_dict[key] = torch.from_numpy(value.numpy()).to(torch.long) | |
return pt_inputs_dict | |
def test_save_load(self): | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common( | |
return_obj_labels="PreTraining" in model_class.__name__ | |
) | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model = model_class.from_pretrained(tmpdirname) | |
after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assert_outputs_same(after_outputs, outputs) | |
class TFLxmertModelIntegrationTest(unittest.TestCase): | |
def test_inference_masked_lm(self): | |
model = TFLxmertModel.from_pretrained("unc-nlp/lxmert-base-uncased") | |
input_ids = tf.constant([[101, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 102]]) | |
num_visual_features = 10 | |
_, visual_feats = np.random.seed(0), np.random.rand(1, num_visual_features, model.config.visual_feat_dim) | |
_, visual_pos = np.random.seed(0), np.random.rand(1, num_visual_features, 4) | |
visual_feats = tf.convert_to_tensor(visual_feats, dtype=tf.float32) | |
visual_pos = tf.convert_to_tensor(visual_pos, dtype=tf.float32) | |
output = model(input_ids, visual_feats=visual_feats, visual_pos=visual_pos)[0] | |
expected_shape = [1, 11, 768] | |
self.assertEqual(expected_shape, output.shape) | |
expected_slice = tf.constant( | |
[ | |
[ | |
[0.24170142, -0.98075, 0.14797261], | |
[1.2540525, -0.83198136, 0.5112344], | |
[1.4070463, -1.1051831, 0.6990401], | |
] | |
] | |
) | |
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4) | |