Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the TensorFlow LayoutLMv3 model. """ | |
from __future__ import annotations | |
import copy | |
import inspect | |
import unittest | |
import numpy as np | |
from transformers import is_tf_available, is_vision_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_tf, slow | |
from transformers.utils import cached_property | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import tensorflow as tf | |
from transformers import ( | |
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
LayoutLMv3Config, | |
TFLayoutLMv3ForQuestionAnswering, | |
TFLayoutLMv3ForSequenceClassification, | |
TFLayoutLMv3ForTokenClassification, | |
TFLayoutLMv3Model, | |
) | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import LayoutLMv3ImageProcessor | |
class TFLayoutLMv3ModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
num_channels=3, | |
image_size=4, | |
patch_size=2, | |
text_seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=36, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
coordinate_size=6, | |
shape_size=6, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
range_bbox=1000, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.coordinate_size = coordinate_size | |
self.shape_size = shape_size | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.range_bbox = range_bbox | |
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) | |
self.text_seq_length = text_seq_length | |
self.image_seq_length = (image_size // patch_size) ** 2 + 1 | |
self.seq_length = self.text_seq_length + self.image_seq_length | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) | |
bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) | |
bbox = bbox.numpy() | |
# Ensure that bbox is legal | |
for i in range(bbox.shape[0]): | |
for j in range(bbox.shape[1]): | |
if bbox[i, j, 3] < bbox[i, j, 1]: | |
tmp_coordinate = bbox[i, j, 3] | |
bbox[i, j, 3] = bbox[i, j, 1] | |
bbox[i, j, 1] = tmp_coordinate | |
if bbox[i, j, 2] < bbox[i, j, 0]: | |
tmp_coordinate = bbox[i, j, 2] | |
bbox[i, j, 2] = bbox[i, j, 0] | |
bbox[i, j, 0] = tmp_coordinate | |
bbox = tf.constant(bbox) | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) | |
config = LayoutLMv3Config( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
coordinate_size=self.coordinate_size, | |
shape_size=self.shape_size, | |
input_size=self.image_size, | |
patch_size=self.patch_size, | |
) | |
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
def create_and_check_model(self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask): | |
model = TFLayoutLMv3Model(config=config) | |
# text + image | |
result = model(input_ids, pixel_values=pixel_values, training=False) | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
training=False, | |
) | |
result = model(input_ids, bbox=bbox, pixel_values=pixel_values, training=False) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
# text only | |
result = model(input_ids, training=False) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) | |
) | |
# image only | |
result = model({"pixel_values": pixel_values}, training=False) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) | |
) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFLayoutLMv3ForSequenceClassification(config=config) | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
labels=sequence_labels, | |
training=False, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels | |
): | |
config.num_labels = self.num_labels | |
model = TFLayoutLMv3ForTokenClassification(config=config) | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
labels=token_labels, | |
training=False, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels | |
): | |
config.num_labels = 2 | |
model = TFLayoutLMv3ForQuestionAnswering(config=config) | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
training=False, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
(config, input_ids, bbox, pixel_values, token_type_ids, input_mask, _, _) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"bbox": bbox, | |
"pixel_values": pixel_values, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class TFLayoutLMv3ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFLayoutLMv3Model, | |
TFLayoutLMv3ForQuestionAnswering, | |
TFLayoutLMv3ForSequenceClassification, | |
TFLayoutLMv3ForTokenClassification, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"document-question-answering": TFLayoutLMv3ForQuestionAnswering, "feature-extraction": TFLayoutLMv3Model} | |
if is_tf_available() | |
else {} | |
) | |
test_pruning = False | |
test_resize_embeddings = False | |
test_onnx = False | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
return True | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict = { | |
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) | |
if isinstance(v, tf.Tensor) and v.ndim > 0 | |
else v | |
for k, v in inputs_dict.items() | |
} | |
if return_labels: | |
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING): | |
inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): | |
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING): | |
inputs_dict["labels"] = tf.zeros( | |
(self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.int32 | |
) | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = TFLayoutLMv3ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_loss_computation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
if getattr(model, "hf_compute_loss", None): | |
# The number of elements in the loss should be the same as the number of elements in the label | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
added_label = prepared_for_class[ | |
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0] | |
] | |
expected_loss_size = added_label.shape.as_list()[:1] | |
# Test that model correctly compute the loss with kwargs | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
input_ids = prepared_for_class.pop("input_ids") | |
loss = model(input_ids, **prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss when we mask some positions | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
input_ids = prepared_for_class.pop("input_ids") | |
if "labels" in prepared_for_class: | |
labels = prepared_for_class["labels"].numpy() | |
if len(labels.shape) > 1 and labels.shape[1] != 1: | |
labels[0] = -100 | |
prepared_for_class["labels"] = tf.convert_to_tensor(labels) | |
loss = model(input_ids, **prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
self.assertTrue(not np.any(np.isnan(loss.numpy()))) | |
# Test that model correctly compute the loss with a dict | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
loss = model(prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss with a tuple | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
# Get keys that were added with the _prepare_for_class function | |
label_keys = prepared_for_class.keys() - inputs_dict.keys() | |
signature = inspect.signature(model.call).parameters | |
signature_names = list(signature.keys()) | |
# Create a dictionary holding the location of the tensors in the tuple | |
tuple_index_mapping = {0: "input_ids"} | |
for label_key in label_keys: | |
label_key_index = signature_names.index(label_key) | |
tuple_index_mapping[label_key_index] = label_key | |
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) | |
# Initialize a list with their default values, update the values and convert to a tuple | |
list_input = [] | |
for name in signature_names: | |
if name != "kwargs": | |
list_input.append(signature[name].default) | |
for index, value in sorted_tuple_index_mapping: | |
list_input[index] = prepared_for_class[value] | |
tuple_input = tuple(list_input) | |
# Send to model | |
loss = model(tuple_input[:-1])[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
def test_model(self): | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
_, | |
_, | |
) = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) | |
def test_model_various_embeddings(self): | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
_, | |
_, | |
) = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config.position_embedding_type = type | |
self.model_tester.create_and_check_model(config, input_ids, bbox, pixel_values, token_type_ids, input_mask) | |
def test_for_sequence_classification(self): | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
_, | |
) = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification( | |
config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels | |
) | |
def test_for_token_classification(self): | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
_, | |
token_labels, | |
) = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification( | |
config, input_ids, bbox, pixel_values, token_type_ids, input_mask, token_labels | |
) | |
def test_for_question_answering(self): | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
_, | |
) = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering( | |
config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels | |
) | |
def test_model_from_pretrained(self): | |
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFLayoutLMv3Model.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class TFLayoutLMv3ModelIntegrationTest(unittest.TestCase): | |
def default_image_processor(self): | |
return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None | |
def test_inference_no_head(self): | |
model = TFLayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base") | |
image_processor = self.default_image_processor | |
image = prepare_img() | |
pixel_values = image_processor(images=image, return_tensors="tf").pixel_values | |
input_ids = tf.constant([[1, 2]]) | |
bbox = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]), axis=0) | |
# forward pass | |
outputs = model(input_ids=input_ids, bbox=bbox, pixel_values=pixel_values, training=False) | |
# verify the logits | |
expected_shape = (1, 199, 768) | |
self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
expected_slice = tf.constant( | |
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] | |
) | |
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |