Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch LayoutLMv3 model. """ | |
import copy | |
import unittest | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
LayoutLMv3Config, | |
LayoutLMv3ForQuestionAnswering, | |
LayoutLMv3ForSequenceClassification, | |
LayoutLMv3ForTokenClassification, | |
LayoutLMv3Model, | |
) | |
from transformers.models.layoutlmv3.modeling_layoutlmv3 import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import LayoutLMv3ImageProcessor | |
class LayoutLMv3ModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=2, | |
num_channels=3, | |
image_size=4, | |
patch_size=2, | |
text_seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=36, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
coordinate_size=6, | |
shape_size=6, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
range_bbox=1000, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.text_seq_length = text_seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.coordinate_size = coordinate_size | |
self.shape_size = shape_size | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.range_bbox = range_bbox | |
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) | |
self.text_seq_length = text_seq_length | |
self.image_seq_length = (image_size // patch_size) ** 2 + 1 | |
self.seq_length = self.text_seq_length + self.image_seq_length | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) | |
bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) | |
# Ensure that bbox is legal | |
for i in range(bbox.shape[0]): | |
for j in range(bbox.shape[1]): | |
if bbox[i, j, 3] < bbox[i, j, 1]: | |
t = bbox[i, j, 3] | |
bbox[i, j, 3] = bbox[i, j, 1] | |
bbox[i, j, 1] = t | |
if bbox[i, j, 2] < bbox[i, j, 0]: | |
t = bbox[i, j, 2] | |
bbox[i, j, 2] = bbox[i, j, 0] | |
bbox[i, j, 0] = t | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) | |
config = LayoutLMv3Config( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
coordinate_size=self.coordinate_size, | |
shape_size=self.shape_size, | |
input_size=self.image_size, | |
patch_size=self.patch_size, | |
) | |
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
def create_and_check_model( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
): | |
model = LayoutLMv3Model(config=config) | |
model.to(torch_device) | |
model.eval() | |
# text + image | |
result = model(input_ids, pixel_values=pixel_values) | |
result = model( | |
input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids | |
) | |
result = model(input_ids, bbox=bbox, pixel_values=pixel_values, token_type_ids=token_type_ids) | |
result = model(input_ids, bbox=bbox, pixel_values=pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
# text only | |
result = model(input_ids) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) | |
) | |
# image only | |
result = model(pixel_values=pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) | |
) | |
def create_and_check_for_sequence_classification( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
): | |
config.num_labels = self.num_labels | |
model = LayoutLMv3ForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
labels=sequence_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_for_token_classification( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
): | |
config.num_labels = self.num_labels | |
model = LayoutLMv3ForTokenClassification(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
labels=token_labels, | |
) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) | |
def create_and_check_for_question_answering( | |
self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
): | |
model = LayoutLMv3ForQuestionAnswering(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model( | |
input_ids, | |
bbox=bbox, | |
pixel_values=pixel_values, | |
attention_mask=input_mask, | |
token_type_ids=token_type_ids, | |
start_positions=sequence_labels, | |
end_positions=sequence_labels, | |
) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
bbox, | |
pixel_values, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"bbox": bbox, | |
"pixel_values": pixel_values, | |
"token_type_ids": token_type_ids, | |
"attention_mask": input_mask, | |
} | |
return config, inputs_dict | |
class LayoutLMv3ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
test_pruning = False | |
test_torchscript = False | |
test_mismatched_shapes = False | |
all_model_classes = ( | |
( | |
LayoutLMv3Model, | |
LayoutLMv3ForSequenceClassification, | |
LayoutLMv3ForTokenClassification, | |
LayoutLMv3ForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"document-question-answering": LayoutLMv3ForQuestionAnswering, "feature-extraction": LayoutLMv3Model} | |
if is_torch_available() | |
else {} | |
) | |
# TODO: Fix the failed tests | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual | |
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has | |
# the sequence dimension of the text embedding only. | |
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) | |
return True | |
def setUp(self): | |
self.model_tester = LayoutLMv3ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict = { | |
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() | |
if isinstance(v, torch.Tensor) and v.ndim > 1 | |
else v | |
for k, v in inputs_dict.items() | |
} | |
if return_labels: | |
if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) | |
elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): | |
inputs_dict["start_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
inputs_dict["end_positions"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
elif model_class in [ | |
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), | |
]: | |
inputs_dict["labels"] = torch.zeros( | |
self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
) | |
elif model_class in [ | |
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), | |
]: | |
inputs_dict["labels"] = torch.zeros( | |
(self.model_tester.batch_size, self.model_tester.text_seq_length), | |
dtype=torch.long, | |
device=torch_device, | |
) | |
return inputs_dict | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_various_embeddings(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
for type in ["absolute", "relative_key", "relative_key_query"]: | |
config_and_inputs[0].position_embedding_type = type | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_for_sequence_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
def test_for_token_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
def test_for_question_answering(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = LayoutLMv3Model.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class LayoutLMv3ModelIntegrationTest(unittest.TestCase): | |
def default_image_processor(self): | |
return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None | |
def test_inference_no_head(self): | |
model = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base").to(torch_device) | |
image_processor = self.default_image_processor | |
image = prepare_img() | |
pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device) | |
input_ids = torch.tensor([[1, 2]]) | |
bbox = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) | |
# forward pass | |
outputs = model( | |
input_ids=input_ids.to(torch_device), | |
bbox=bbox.to(torch_device), | |
pixel_values=pixel_values.to(torch_device), | |
) | |
# verify the logits | |
expected_shape = torch.Size((1, 199, 768)) | |
self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |