Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 Huggingface | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from transformers import ( | |
DPRContextEncoderTokenizer, | |
DPRContextEncoderTokenizerFast, | |
DPRQuestionEncoderTokenizer, | |
DPRQuestionEncoderTokenizerFast, | |
DPRReaderOutput, | |
DPRReaderTokenizer, | |
DPRReaderTokenizerFast, | |
) | |
from transformers.testing_utils import require_tokenizers, slow | |
from transformers.tokenization_utils_base import BatchEncoding | |
from ..bert.test_tokenization_bert import BertTokenizationTest | |
class DPRContextEncoderTokenizationTest(BertTokenizationTest): | |
tokenizer_class = DPRContextEncoderTokenizer | |
rust_tokenizer_class = DPRContextEncoderTokenizerFast | |
test_rust_tokenizer = True | |
class DPRQuestionEncoderTokenizationTest(BertTokenizationTest): | |
tokenizer_class = DPRQuestionEncoderTokenizer | |
rust_tokenizer_class = DPRQuestionEncoderTokenizerFast | |
test_rust_tokenizer = True | |
class DPRReaderTokenizationTest(BertTokenizationTest): | |
tokenizer_class = DPRReaderTokenizer | |
rust_tokenizer_class = DPRReaderTokenizerFast | |
test_rust_tokenizer = True | |
def test_decode_best_spans(self): | |
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") | |
text_1 = tokenizer.encode("question sequence", add_special_tokens=False) | |
text_2 = tokenizer.encode("title sequence", add_special_tokens=False) | |
text_3 = tokenizer.encode("text sequence " * 4, add_special_tokens=False) | |
input_ids = [[101] + text_1 + [102] + text_2 + [102] + text_3] | |
reader_input = BatchEncoding({"input_ids": input_ids}) | |
start_logits = [[0] * len(input_ids[0])] | |
end_logits = [[0] * len(input_ids[0])] | |
relevance_logits = [0] | |
reader_output = DPRReaderOutput(start_logits, end_logits, relevance_logits) | |
start_index, end_index = 8, 9 | |
start_logits[0][start_index] = 10 | |
end_logits[0][end_index] = 10 | |
predicted_spans = tokenizer.decode_best_spans(reader_input, reader_output) | |
self.assertEqual(predicted_spans[0].start_index, start_index) | |
self.assertEqual(predicted_spans[0].end_index, end_index) | |
self.assertEqual(predicted_spans[0].doc_id, 0) | |
def test_call(self): | |
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased") | |
text_1 = tokenizer.encode("question sequence", add_special_tokens=False) | |
text_2 = tokenizer.encode("title sequence", add_special_tokens=False) | |
text_3 = tokenizer.encode("text sequence", add_special_tokens=False) | |
expected_input_ids = [101] + text_1 + [102] + text_2 + [102] + text_3 | |
encoded_input = tokenizer(questions=["question sequence"], titles=["title sequence"], texts=["text sequence"]) | |
self.assertIn("input_ids", encoded_input) | |
self.assertIn("attention_mask", encoded_input) | |
self.assertListEqual(encoded_input["input_ids"][0], expected_input_ids) | |