Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 Huggingface | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import unittest | |
from transformers import is_tf_available | |
from transformers.testing_utils import require_tf, slow | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_tf_available(): | |
import numpy | |
import tensorflow as tf | |
from transformers import ( | |
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BertConfig, | |
DPRConfig, | |
TFDPRContextEncoder, | |
TFDPRQuestionEncoder, | |
TFDPRReader, | |
) | |
class TFDPRModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_token_type_ids=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
projection_dim=0, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_token_type_ids = use_token_type_ids | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = scope | |
self.projection_dim = projection_dim | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
# follow test_modeling_tf_ctrl.py | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
token_type_ids = None | |
if self.use_token_type_ids: | |
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
sequence_labels = None | |
token_labels = None | |
choice_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
config = BertConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
max_position_embeddings=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
) | |
config = DPRConfig(projection_dim=self.projection_dim, **config.to_dict()) | |
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
def create_and_check_dpr_context_encoder( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFDPRContextEncoder(config=config) | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) | |
def create_and_check_dpr_question_encoder( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFDPRQuestionEncoder(config=config) | |
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
result = model(input_ids, token_type_ids=token_type_ids) | |
result = model(input_ids) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size)) | |
def create_and_check_dpr_reader( | |
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
): | |
model = TFDPRReader(config=config) | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
input_ids, | |
token_type_ids, | |
input_mask, | |
sequence_labels, | |
token_labels, | |
choice_labels, | |
) = config_and_inputs | |
inputs_dict = {"input_ids": input_ids} | |
return config, inputs_dict | |
class TFDPRModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
TFDPRContextEncoder, | |
TFDPRQuestionEncoder, | |
TFDPRReader, | |
) | |
if is_tf_available() | |
else () | |
) | |
pipeline_model_mapping = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} | |
test_resize_embeddings = False | |
test_missing_keys = False | |
test_pruning = False | |
test_head_masking = False | |
test_onnx = False | |
def setUp(self): | |
self.model_tester = TFDPRModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_dpr_context_encoder_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_dpr_context_encoder(*config_and_inputs) | |
def test_dpr_question_encoder_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_dpr_question_encoder(*config_and_inputs) | |
def test_dpr_reader_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_dpr_reader(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFDPRContextEncoder.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFDPRContextEncoder.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFDPRQuestionEncoder.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = TFDPRReader.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class TFDPRModelIntegrationTest(unittest.TestCase): | |
def test_inference_no_head(self): | |
model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") | |
input_ids = tf.constant( | |
[[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] | |
) # [CLS] hello, is my dog cute? [SEP] | |
output = model(input_ids)[0] # embedding shape = (1, 768) | |
# compare the actual values for a slice. | |
expected_slice = tf.constant( | |
[ | |
[ | |
0.03236253, | |
0.12753335, | |
0.16818509, | |
0.00279786, | |
0.3896933, | |
0.24264945, | |
0.2178971, | |
-0.02335227, | |
-0.08481959, | |
-0.14324117, | |
] | |
] | |
) | |
self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4)) | |