File size: 30,362 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow GroupViT model. """


from __future__ import annotations

import inspect
import os
import random
import tempfile
import unittest
from importlib import import_module

import numpy as np
import requests

from transformers import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig
from transformers.testing_utils import (
    is_pt_tf_cross_test,
    require_tensorflow_probability,
    require_tf,
    require_vision,
    slow,
)
from transformers.utils import is_tf_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_tf_available():
    import tensorflow as tf

    from transformers import TFGroupViTModel, TFGroupViTTextModel, TFGroupViTVisionModel, TFSharedEmbeddings
    from transformers.models.groupvit.modeling_tf_groupvit import TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import CLIPProcessor


class TFGroupViTVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
        depths=[6, 3, 3],
        num_group_tokens=[64, 8, 0],
        num_output_groups=[64, 8, 8],
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.depths = depths
        self.num_hidden_layers = sum(depths)
        self.expected_num_hidden_layers = len(depths) + 1
        self.num_group_tokens = num_group_tokens
        self.num_output_groups = num_output_groups
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

        num_patches = (image_size // patch_size) ** 2
        # no [CLS] token for GroupViT
        self.seq_length = num_patches

    def prepare_config_and_inputs(self):
        rng = random.Random(0)
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size], rng=rng)
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return GroupViTVisionConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            depths=self.depths,
            num_group_tokens=self.num_group_tokens,
            num_output_groups=self.num_output_groups,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = TFGroupViTVisionModel(config=config)
        result = model(pixel_values, training=False)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.num_output_groups[-1], self.hidden_size)
        )
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
class TFGroupViTVisionModelTest(TFModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as GroupViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (TFGroupViTVisionModel,) if is_tf_available() else ()

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-4, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as this model tends to diverge a bit more
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)

    def setUp(self):
        self.model_tester = TFGroupViTVisionModelTester(self)
        self.config_tester = ConfigTester(
            self, config_class=GroupViTVisionConfig, has_text_modality=False, hidden_size=37
        )

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="GroupViT does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    """
    During saving, TensorFlow will also run with `training=True` which trigger `gumbel_softmax` that requires
    `tensorflow-probability`.
    """

    @require_tensorflow_probability
    @slow
    def test_saved_model_creation(self):
        super().test_saved_model_creation()

    @unittest.skip(reason="GroupViT does not use inputs_embeds")
    def test_graph_mode_with_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        seq_len = getattr(self.model_tester, "seq_length", None)

        expected_num_attention_outputs = sum(g > 0 for g in self.model_tester.num_group_tokens)

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
            attentions = outputs.attentions
            # GroupViT returns attention grouping of each stage
            self.assertEqual(len(attentions), sum(g > 0 for g in self.model_tester.num_group_tokens))

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
            attentions = outputs.attentions
            # GroupViT returns attention grouping of each stage
            self.assertEqual(len(attentions), expected_num_attention_outputs)

            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)

            added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            # GroupViT returns attention grouping of each stage
            self.assertEqual(len(self_attentions), expected_num_attention_outputs)
            for i, self_attn in enumerate(self_attentions):
                if self_attn is None:
                    continue

                self.assertListEqual(
                    list(self_attentions[i].shape[-2:]),
                    [
                        self.model_tester.num_output_groups[i],
                        self.model_tester.num_output_groups[i - 1] if i > 0 else seq_len,
                    ],
                )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)

            outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = getattr(self.model_tester, "seq_length", None)

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        # `GroupViT` computes some indices using argmax, uses them as
        # one-hot encoding for further computation. The problem is
        # while PT/TF have very small difference in `y_soft` (~ 1e-9),
        # the argmax could be totally different, if there are at least
        # 2 indices with almost identical values. This leads to very
        # large difference in the outputs. We need specific seeds to
        # avoid almost identical values happening in `y_soft`.
        import torch

        seed = 338
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        tf.random.set_seed(seed)
        return super().test_pt_tf_model_equivalence()

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFGroupViTVisionModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @unittest.skip(
        "TFGroupViTVisionModel does not convert `hidden_states` and `attentions` to tensors as they are all of"
        " different dimensions, and we get `Got a non-Tensor value` error when saving the model."
    )
    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        seq_len = getattr(self.model_tester, "seq_length", None)

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(class_inputs_dict))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
                outputs = model(class_inputs_dict)
                output_hidden_states = outputs["hidden_states"]
                output_attentions = outputs["attentions"]

                # Check num outputs
                self.assertEqual(len(outputs), num_out)

                # Check num layers
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )

                self.assertEqual(len(output_hidden_states), expected_num_layers)
                self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)

                # Check attention outputs
                image_size = (self.model_tester.image_size, self.model_tester.image_size)
                patch_size = (self.model_tester.patch_size, self.model_tester.patch_size)
                num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
                seq_len = num_patches + 1

                self.assertListEqual(
                    list(output_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_len, seq_len],
                )

                # Check hidden states
                self.assertListEqual(
                    list(output_hidden_states[0].shape[-2:]),
                    [seq_len, self.model_tester.hidden_size],
                )


class TFGroupViTTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        rng = random.Random(0)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size, rng=rng)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
            # make sure the first token has attention mask `1` to ensure that, after combining the causal mask, there
            # is still at least one token being attended to for each batch.
            # TODO: Change `random_attention_mask` in PT/TF/Flax common test file, after a discussion with the team.
            input_mask = tf.concat(
                [tf.ones_like(input_mask[:, :1], dtype=input_mask.dtype), input_mask[:, 1:]], axis=-1
            )

        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return GroupViTTextConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = TFGroupViTTextModel(config=config)
        result = model(input_ids, attention_mask=input_mask, training=False)
        result = model(input_ids, training=False)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_tf
class TFGroupViTTextModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFGroupViTTextModel,) if is_tf_available() else ()
    test_pruning = False
    test_head_masking = False
    test_onnx = False

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-4, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as this model tends to diverge a bit more
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)

    def setUp(self):
        self.model_tester = TFGroupViTTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GroupViTTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="GroupViTTextModel does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFGroupViTTextModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @slow
    def test_saved_model_creation_extended(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        if hasattr(config, "use_cache"):
            config.use_cache = True

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(class_inputs_dict))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
                outputs = model(class_inputs_dict)
                output_hidden_states = outputs["hidden_states"]
                output_attentions = outputs["attentions"]

                # Check number of outputs
                self.assertEqual(len(outputs), num_out)

                # Check number of layers
                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )

                # Check hidden states
                self.assertEqual(len(output_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(output_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )

                # Check attention outputs
                self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)

                seq_length = self.model_tester.seq_length
                key_length = getattr(self.model_tester, "key_length", seq_length)

                self.assertListEqual(
                    list(output_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, seq_length, key_length],
                )


class TFGroupViTModelTester:
    def __init__(self, parent, is_training=True):
        self.parent = parent
        self.text_model_tester = TFGroupViTTextModelTester(parent)
        self.vision_model_tester = TFGroupViTVisionModelTester(parent)
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

        config = self.get_config()

        return config, input_ids, attention_mask, pixel_values

    def get_config(self):
        return GroupViTConfig.from_text_vision_configs(
            self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
        )

    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = TFGroupViTModel(config)
        result = model(input_ids, pixel_values, attention_mask, training=False)
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": True,
        }
        return config, inputs_dict


@require_tf
class TFGroupViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (TFGroupViTModel,) if is_tf_available() else ()
    pipeline_model_mapping = {"feature-extraction": TFGroupViTModel} if is_tf_available() else {}
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False
    test_onnx = False

    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-4, name="outputs", attributes=None):
        # We override with a slightly higher tol value, as this model tends to diverge a bit more
        super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)

    def setUp(self):
        self.model_tester = TFGroupViTModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @unittest.skip(reason="hidden_states are tested in individual model tests")
    def test_hidden_states_output(self):
        pass

    @unittest.skip(reason="input_embeds are tested in individual model tests")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="CLIPModel does not have input/output embeddings")
    def test_model_common_attributes(self):
        pass

    @require_tensorflow_probability
    @slow
    def test_keras_fit(self):
        super().test_keras_fit()

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        # `GroupViT` computes some indices using argmax, uses them as
        # one-hot encoding for further computation. The problem is
        # while PT/TF have very small difference in `y_soft` (~ 1e-9),
        # the argmax could be totally different, if there are at least
        # 2 indices with almost identical values. This leads to very
        # large difference in the outputs. We need specific seeds to
        # avoid almost identical values happening in `y_soft`.
        import torch

        seed = 158
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        tf.random.set_seed(seed)
        return super().test_pt_tf_model_equivalence()

    # overwrite from common since `TFGroupViTModelTester` set `return_loss` to `True` and causes the preparation of
    # `symbolic_inputs` failed.
    def test_keras_save_load(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # remove `return_loss` to make code work
        if self.__class__.__name__ == "TFGroupViTModelTest":
            inputs_dict.pop("return_loss", None)

        tf_main_layer_classes = {
            module_member
            for model_class in self.all_model_classes
            for module in (import_module(model_class.__module__),)
            for module_member_name in dir(module)
            if module_member_name.endswith("MainLayer")
            # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
            and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")]
            for module_member in (getattr(module, module_member_name),)
            if isinstance(module_member, type)
            and tf.keras.layers.Layer in module_member.__bases__
            and getattr(module_member, "_keras_serializable", False)
        }
        for main_layer_class in tf_main_layer_classes:
            # T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter
            if "T5" in main_layer_class.__name__:
                # Take the same values than in TFT5ModelTester for this shared layer
                shared = TFSharedEmbeddings(99, 32, name="shared")
                config.use_cache = inputs_dict.pop("use_cache", None)
                main_layer = main_layer_class(config, embed_tokens=shared)
            else:
                main_layer = main_layer_class(config)

            symbolic_inputs = {
                name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
            }

            model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
            outputs = model(inputs_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                filepath = os.path.join(tmpdirname, "keras_model.h5")
                model.save(filepath)
                if "T5" in main_layer_class.__name__:
                    model = tf.keras.models.load_model(
                        filepath,
                        custom_objects={
                            main_layer_class.__name__: main_layer_class,
                            "TFSharedEmbeddings": TFSharedEmbeddings,
                        },
                    )
                else:
                    model = tf.keras.models.load_model(
                        filepath, custom_objects={main_layer_class.__name__: main_layer_class}
                    )
                assert isinstance(model, tf.keras.Model)
                after_outputs = model(inputs_dict)
                self.assert_outputs_same(after_outputs, outputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = TFGroupViTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @unittest.skip(reason="Currently `saved_model` doesn't work with nested outputs.")
    @slow
    def test_saved_model_creation(self):
        pass

    @unittest.skip(reason="`saved_model` doesn't work with nested outputs so no preparation happens.")
    @slow
    def test_prepare_serving_output(self):
        pass


# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@require_vision
@require_tf
class TFGroupViTModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "nvidia/groupvit-gcc-yfcc"
        model = TFGroupViTModel.from_pretrained(model_name)
        processor = CLIPProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="tf"
        )

        outputs = model(**inputs, training=False)

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            tf.TensorShape((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            tf.TensorShape((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

        expected_logits = tf.constant([[13.3523, 6.3629]])

        tf.debugging.assert_near(outputs.logits_per_image, expected_logits, atol=1e-3)