File size: 21,042 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๊ธฐ[[finetune-a-pretrained-model]]

[[open-in-colab]]

์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋ฉด ์ƒ๋‹นํ•œ ์ด์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณ„์‚ฐ ๋น„์šฉ๊ณผ ํƒ„์†Œ๋ฐœ์ž๊ตญ์„ ์ค„์ด๊ณ , ์ฒ˜์Œ๋ถ€ํ„ฐ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ํ•„์š” ์—†์ด ์ตœ์‹  ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿค— Transformers๋Š” ๋‹ค์–‘ํ•œ ์ž‘์—…์„ ์œ„ํ•ด ์‚ฌ์ „ ํ•™์Šต๋œ ์ˆ˜์ฒœ ๊ฐœ์˜ ๋ชจ๋ธ์— ์•ก์„ธ์Šคํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, ์ž์‹ ์˜ ์ž‘์—…๊ณผ ๊ด€๋ จ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•ด ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ๋ฏธ์„ธ ํŠœ๋‹์ด๋ผ๊ณ  ํ•˜๋Š” ๋งค์šฐ ๊ฐ•๋ ฅํ•œ ํ›ˆ๋ จ ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด ํŠœํ† ๋ฆฌ์–ผ์—์„œ๋Š” ๋‹น์‹ ์ด ์„ ํƒํ•œ ๋”ฅ๋Ÿฌ๋‹ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•ฉ๋‹ˆ๋‹ค:

* ๐Ÿค— Transformers๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๊ธฐ [`Trainer`].
* Keras๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ TensorFlow์—์„œ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๊ธฐ.
* ๊ธฐ๋ณธ PyTorch์—์„œ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๊ธฐ.

<a id='data-processing'></a>

## ๋ฐ์ดํ„ฐ์…‹ ์ค€๋น„[[prepare-a-dataset]]

<Youtube id="_BZearw7f0w"/>

์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋ฐ์ดํ„ฐ์…‹์„ ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ๋„๋ก ์ค€๋น„ํ•˜์„ธ์š”. ์ด์ „ ํŠœํ† ๋ฆฌ์–ผ์—์„œ ํ›ˆ๋ จ์„ ์œ„ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด์—ฌ๋“œ๋ ธ๋Š”๋ฐ, ์ง€๊ธˆ์ด ๋ฐฐ์šธ ๊ฑธ ๋˜์งš์„ ๊ธฐํšŒ์ž…๋‹ˆ๋‹ค!

๋จผ์ € [Yelp ๋ฆฌ๋ทฐ](https://huggingface.co/datasets/yelp_review_full) ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค:

```py
>>> from datasets import load_dataset

>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
 'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
```

ํ…์ŠคํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ์„œ๋กœ ๋‹ค๋ฅธ ๊ธธ์ด์˜ ์‹œํ€€์Šค ํŒจ๋”ฉ ๋ฐ ์ž˜๋ผ๋‚ด๊ธฐ ์ „๋žต์„ ํฌํ•จํ•˜๋ ค๋ฉด ํ† ํฌ๋‚˜์ด์ €๊ฐ€ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ ๋ฒˆ์— ์ฒ˜๋ฆฌํ•˜๋ ค๋ฉด ๐Ÿค— Dataset [`map`](https://huggingface.co/docs/datasets/process.html#map) ๋ฉ”์„œ๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ์ „์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•˜์„ธ์š”:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")


>>> def tokenize_function(examples):
...     return tokenizer(examples["text"], padding="max_length", truncation=True)


>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```

ํ•„์š”ํ•œ ๊ฒฝ์šฐ ๋ฏธ์„ธ ํŠœ๋‹์„ ์œ„ํ•ด ๋ฐ์ดํ„ฐ์…‹์˜ ์ž‘์€ ๋ถ€๋ถ„ ์ง‘ํ•ฉ์„ ๋งŒ๋“ค์–ด ๋ฏธ์„ธ ํŠœ๋‹ ์ž‘์—… ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```

<a id='trainer'></a>

## Train

์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ๋Š” ์‚ฌ์šฉํ•˜๋ ค๋Š” ํ”„๋ ˆ์ž„์›Œํฌ์— ํ•ด๋‹นํ•˜๋Š” ์„น์…˜์„ ๋”ฐ๋ผ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์˜ค๋ฅธ์ชฝ ์‚ฌ์ด๋“œ๋ฐ”์˜ ๋งํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์›ํ•˜๋Š” ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ์ด๋™ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํŠน์ • ํ”„๋ ˆ์ž„์›Œํฌ์˜ ๋ชจ๋“  ์ฝ˜ํ…์ธ ๋ฅผ ์ˆจ๊ธฐ๋ ค๋ฉด ํ•ด๋‹น ํ”„๋ ˆ์ž„์›Œํฌ ๋ธ”๋ก์˜ ์˜ค๋ฅธ์ชฝ ์ƒ๋‹จ์— ์žˆ๋Š” ๋ฒ„ํŠผ์„ ์‚ฌ์šฉํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค!

<frameworkcontent>
<pt>
<Youtube id="nvBXf7s7vTI"/>

## ํŒŒ์ดํ† ์น˜ Trainer๋กœ ํ›ˆ๋ จํ•˜๊ธฐ[[train-with-pytorch-trainer]]

๐Ÿค— Transformers๋Š” ๐Ÿค— Transformers ๋ชจ๋ธ ํ›ˆ๋ จ์— ์ตœ์ ํ™”๋œ [`Trainer`] ํด๋ž˜์Šค๋ฅผ ์ œ๊ณตํ•˜์—ฌ ํ›ˆ๋ จ ๋ฃจํ”„๋ฅผ ์ง์ ‘ ์ž‘์„ฑํ•˜์ง€ ์•Š๊ณ ๋„ ์‰ฝ๊ฒŒ ํ›ˆ๋ จ์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. [`Trainer`] API๋Š” ๋กœ๊น…(logging), ๊ฒฝ์‚ฌ ๋ˆ„์ (gradient accumulation), ํ˜ผํ•ฉ ์ •๋ฐ€๋„(mixed precision) ๋“ฑ ๋‹ค์–‘ํ•œ ํ›ˆ๋ จ ์˜ต์…˜๊ณผ ๊ธฐ๋Šฅ์„ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.

๋จผ์ € ๋ชจ๋ธ์„ ๊ฐ€์ ธ์˜ค๊ณ  ์˜ˆ์ƒ๋˜๋Š” ๋ ˆ์ด๋ธ” ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. Yelp ๋ฆฌ๋ทฐ [๋ฐ์ดํ„ฐ์…‹ ์นด๋“œ](https://huggingface.co/datasets/yelp_review_full#data-fields)์—์„œ 5๊ฐœ์˜ ๋ ˆ์ด๋ธ”์ด ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```

<Tip>

์‚ฌ์ „ ํ›ˆ๋ จ๋œ ๊ฐ€์ค‘์น˜ ์ค‘ ์ผ๋ถ€๊ฐ€ ์‚ฌ์šฉ๋˜์ง€ ์•Š๊ณ  ์ผ๋ถ€ ๊ฐ€์ค‘์น˜๊ฐ€ ๋ฌด์ž‘์œ„๋กœ ํ‘œ์‹œ๋œ๋‹ค๋Š” ๊ฒฝ๊ณ ๊ฐ€ ํ‘œ์‹œ๋ฉ๋‹ˆ๋‹ค.
๊ฑฑ์ •๋งˆ์„ธ์š”. ์ด๊ฒƒ์€ ์˜ฌ๋ฐ”๋ฅธ ๋™์ž‘์ž…๋‹ˆ๋‹ค! ์‚ฌ์ „ ํ•™์Šต๋œ BERT ๋ชจ๋ธ์˜ ํ—ค๋“œ๋Š” ํ๊ธฐ๋˜๊ณ  ๋ฌด์ž‘์œ„๋กœ ์ดˆ๊ธฐํ™”๋œ ๋ถ„๋ฅ˜ ํ—ค๋“œ๋กœ ๋Œ€์ฒด๋ฉ๋‹ˆ๋‹ค. ์ด์ œ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์˜ ์ง€์‹์œผ๋กœ ์‹œํ€€์Šค ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ชจ๋ธ ํ—ค๋“œ๋ฅผ ๋ฏธ์„ธ ํŠœ๋‹ ํ•ฉ๋‹ˆ๋‹ค.

</Tip>

### ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํ›ˆ๋ จ[[training-hyperparameters]]

๋‹ค์Œ์œผ๋กœ ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋“  ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์™€ ๋‹ค์–‘ํ•œ ํ›ˆ๋ จ ์˜ต์…˜์„ ํ™œ์„ฑํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํ”Œ๋ž˜๊ทธ๋ฅผ ํฌํ•จํ•˜๋Š” [`TrainingArguments`] ํด๋ž˜์Šค๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.

์ด ํŠœํ† ๋ฆฌ์–ผ์—์„œ๋Š” ๊ธฐ๋ณธ ํ›ˆ๋ จ [ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments)๋กœ ์‹œ์ž‘ํ•˜์ง€๋งŒ, ์ž์œ ๋กญ๊ฒŒ ์‹คํ—˜ํ•˜์—ฌ ์—ฌ๋Ÿฌ๋ถ„๋“ค์—๊ฒŒ ๋งž๋Š” ์ตœ์ ์˜ ์„ค์ •์„ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ›ˆ๋ จ์—์„œ ์ฒดํฌํฌ์ธํŠธ(checkpoints)๋ฅผ ์ €์žฅํ•  ์œ„์น˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค:

```py
>>> from transformers import TrainingArguments

>>> training_args = TrainingArguments(output_dir="test_trainer")
```

### ํ‰๊ฐ€ ํ•˜๊ธฐ[[evaluate]]

[`Trainer`]๋Š” ํ›ˆ๋ จ ์ค‘์— ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ์ž๋™์œผ๋กœ ํ‰๊ฐ€ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ  ๋ณด๊ณ ํ•  ํ•จ์ˆ˜๋ฅผ [`Trainer`]์— ์ „๋‹ฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. 
[๐Ÿค— Evaluate](https://huggingface.co/docs/evaluate/index) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋Š” [`evaluate.load`](https://huggingface.co/spaces/evaluate-metric/accuracy) ํ•จ์ˆ˜๋กœ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ„๋‹จํ•œ [`accuracy`]ํ•จ์ˆ˜๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค (์ž์„ธํ•œ ๋‚ด์šฉ์€ [๋‘˜๋Ÿฌ๋ณด๊ธฐ](https://huggingface.co/docs/evaluate/a_quick_tour)๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”):

```py
>>> import numpy as np
>>> import evaluate

>>> metric = evaluate.load("accuracy")
```

`metric`์—์„œ [`~evaluate.compute`]๋ฅผ ํ˜ธ์ถœํ•˜์—ฌ ์˜ˆ์ธก์˜ ์ •ํ™•๋„๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ์ธก์„ `compute`์— ์ „๋‹ฌํ•˜๊ธฐ ์ „์— ์˜ˆ์ธก์„ ๋กœ์ง“์œผ๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค(๋ชจ๋“  ๐Ÿค— Transformers ๋ชจ๋ธ์€ ๋กœ์ง“์œผ๋กœ ๋ฐ˜ํ™˜ํ•œ๋‹ค๋Š” ์ ์„ ๊ธฐ์–ตํ•˜์„ธ์š”):

```py
>>> def compute_metrics(eval_pred):
...     logits, labels = eval_pred
...     predictions = np.argmax(logits, axis=-1)
...     return metric.compute(predictions=predictions, references=labels)
```

๋ฏธ์„ธ ํŠœ๋‹ ์ค‘์— ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋ ค๋ฉด ํ›ˆ๋ จ ์ธ์ˆ˜์— `evaluation_strategy` ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ง€์ •ํ•˜์—ฌ ๊ฐ ์—ํญ์ด ๋๋‚  ๋•Œ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
>>> from transformers import TrainingArguments, Trainer

>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
```

### ํ›ˆ๋ จ ํ•˜๊ธฐ[[trainer]]

๋ชจ๋ธ, ํ›ˆ๋ จ ์ธ์ˆ˜, ํ›ˆ๋ จ ๋ฐ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์…‹, ํ‰๊ฐ€ ํ•จ์ˆ˜๊ฐ€ ํฌํ•จ๋œ [`Trainer`] ๊ฐ์ฒด๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค:

```py
>>> trainer = Trainer(
...     model=model,
...     args=training_args,
...     train_dataset=small_train_dataset,
...     eval_dataset=small_eval_dataset,
...     compute_metrics=compute_metrics,
... )
```

๊ทธ๋ฆฌ๊ณ  [`~transformers.Trainer.train`]์„ ํ˜ธ์ถœํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•ฉ๋‹ˆ๋‹ค:

```py
>>> trainer.train()
```
</pt>
<tf>
<a id='keras'></a>

<Youtube id="rnTGBy2ax1c"/>

## Keras๋กœ ํ…์„œํ”Œ๋กœ์šฐ ๋ชจ๋ธ ํ›ˆ๋ จํ•˜๊ธฐ[[train-a-tensorflow-model-with-keras]]

Keras API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ…์„œํ”Œ๋กœ์šฐ์—์„œ ๐Ÿค— Transformers ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค!

### Keras์šฉ ๋ฐ์ดํ„ฐ ๋กœ๋“œ[[loading-data-for-keras]]

Keras API๋กœ ๐Ÿค— Transformers ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋ ค๋ฉด ๋ฐ์ดํ„ฐ์…‹์„ Keras๊ฐ€ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ, ์ „์ฒด๋ฅผ NumPy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ Keras๋กœ ์ „๋‹ฌํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.
๋” ๋ณต์žกํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์ „์— ๋จผ์ € ์ด ์ž‘์—…์„ ์‹œ๋„ํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

๋จผ์ € ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค. [GLUE ๋ฒค์น˜๋งˆํฌ](https://huggingface.co/datasets/glue)์˜ CoLA ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.
๊ฐ„๋‹จํ•œ ๋ฐ”์ด๋„ˆ๋ฆฌ ํ…์ŠคํŠธ ๋ถ„๋ฅ˜ ์ž‘์—…์ด๋ฏ€๋กœ ์ง€๊ธˆ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ ๋ถ„ํ• ๋งŒ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

```py
from datasets import load_dataset

dataset = load_dataset("glue", "cola")
dataset = dataset["train"]  # Just take the training split for now
```

๋‹ค์Œ์œผ๋กœ ํ† ํฌ๋‚˜์ด์ €๋ฅผ ๋กœ๋“œํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ NumPy ๋ฐฐ์—ด๋กœ ํ† ํฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ๋ ˆ์ด๋ธ”์€ ์ด๋ฏธ 0๊ณผ 1๋กœ ๋œ ๋ฆฌ์ŠคํŠธ์ด๊ธฐ ๋•Œ๋ฌธ์— ํ† ํฐํ™”ํ•˜์ง€ ์•Š๊ณ  ๋ฐ”๋กœ NumPy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

```py
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
tokenized_data = dict(tokenized_data)

labels = np.array(dataset["label"])  # Label is already an array of 0 and 1
```

๋งˆ์ง€๋ง‰์œผ๋กœ ๋ชจ๋ธ์„ ๋กœ๋“œ, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method), [`fit`](https://keras.io/api/models/model_training_apis/#fit-method)ํ•ฉ๋‹ˆ๋‹ค:

```py
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam

# Load and compile our model
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
# Lower learning rates are often better for fine-tuning transformers
model.compile(optimizer=Adam(3e-5))

model.fit(tokenized_data, labels)
```

<Tip>

๋ชจ๋ธ์„ `compile()`ํ•  ๋•Œ ์†์‹ค ์ธ์ˆ˜๋ฅผ ๋ชจ๋ธ์— ์ „๋‹ฌํ•  ํ•„์š”๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค! 
์ด ์ธ์ˆ˜๋ฅผ ๋น„์›Œ๋‘๋ฉด ํ—ˆ๊น… ํŽ˜์ด์Šค ๋ชจ๋ธ์€ ์ž‘์—…๊ณผ ๋ชจ๋ธ ์•„ํ‚คํ…์ฒ˜์— ์ ํ•ฉํ•œ ์†์‹ค์„ ์ž๋™์œผ๋กœ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค. 
์›ํ•œ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ์ง์ ‘ ์†์‹ค์„ ์ง€์ •ํ•˜์—ฌ ์ด๋ฅผ ์žฌ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค!

</Tip>

์ด ์ ‘๊ทผ ๋ฐฉ์‹์€ ์†Œ๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ๋Š” ์ž˜ ์ž‘๋™ํ•˜์ง€๋งŒ, ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ๋Š” ๋ฌธ์ œ๊ฐ€ ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์™œ ๊ทธ๋Ÿด๊นŒ์š”?
ํ† ํฐํ™”๋œ ๋ฐฐ์—ด๊ณผ ๋ ˆ์ด๋ธ”์„ ๋ฉ”๋ชจ๋ฆฌ์— ์™„์ „ํžˆ ๋กœ๋“œํ•˜๊ณ  NumPy๋Š” "๋“ค์ญ‰๋‚ ์ญ‰ํ•œ" ๋ฐฐ์—ด์„ ์ฒ˜๋ฆฌํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—,
๋ชจ๋“  ํ† ํฐํ™”๋œ ์ƒ˜ํ”Œ์„ ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์—์„œ ๊ฐ€์žฅ ๊ธด ์ƒ˜ํ”Œ์˜ ๊ธธ์ด๋งŒํผ ํŒจ๋”ฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ๋ฐฐ์—ด์ด ํ›จ์”ฌ ๋” ์ปค์ง€๊ณ  ์ด ํŒจ๋”ฉ ํ† ํฐ์œผ๋กœ ์ธํ•ด ํ•™์Šต ์†๋„๋„ ๋А๋ ค์ง‘๋‹ˆ๋‹ค!

### ๋ฐ์ดํ„ฐ๋ฅผ tf.data.Dataset์œผ๋กœ ๋กœ๋“œํ•˜๊ธฐ[[loading-data-as-a-tfdatadataset]]

ํ•™์Šต ์†๋„๊ฐ€ ๋А๋ ค์ง€๋Š” ๊ฒƒ์„ ํ”ผํ•˜๋ ค๋ฉด ๋ฐ์ดํ„ฐ๋ฅผ `tf.data.Dataset`์œผ๋กœ ๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์›ํ•œ๋‹ค๋ฉด ์ง์ ‘
`tf.data` ํŒŒ์ดํ”„๋ผ์ธ์„ ์ง์ ‘ ์ž‘์„ฑํ•  ์ˆ˜๋„ ์žˆ์ง€๋งŒ, ์ด ์ž‘์—…์„ ๊ฐ„ํŽธํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•˜๋Š” ์ˆ˜ ์žˆ๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์ด ์žˆ์Šต๋‹ˆ๋‹ค:

- [`~TFPreTrainedModel.prepare_tf_dataset`]: ๋Œ€๋ถ€๋ถ„์˜ ๊ฒฝ์šฐ ์ด ๋ฐฉ๋ฒ•์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๋ฉ”์„œ๋“œ์ด๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋ธ์„ ๊ฒ€์‚ฌํ•˜์—ฌ ๋ชจ๋ธ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์—ด์„ ์ž๋™์œผ๋กœ ํŒŒ์•…ํ•˜๊ณ 
๋‚˜๋จธ์ง€๋Š” ๋ฒ„๋ ค์„œ ๋” ๋‹จ์ˆœํ•˜๊ณ  ์„ฑ๋Šฅ์ด ์ข‹์€ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
- [`~datasets.Dataset.to_tf_dataset`]: ์ด ๋ฐฉ๋ฒ•์€ ์ข€ ๋” ๋‚ฎ์€ ์ˆ˜์ค€์ด๋ฉฐ, ํฌํ•จํ•  '์—ด'๊ณผ '๋ ˆ์ด๋ธ”'์„ ์ •ํ™•ํžˆ ์ง€์ •ํ•˜์—ฌ
๋ฐ์ดํ„ฐ์…‹์„ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ •ํ™•ํžˆ ์ œ์–ดํ•˜๊ณ  ์‹ถ์„ ๋•Œ ์œ ์šฉํ•˜๋ฉฐ, ํฌํ•จํ•  'columns'๊ณผ 'label_cols'์„ ์ •ํ™•ํžˆ ์ง€์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

[`~TFPreTrainedModel.prepare_tf_dataset`]์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด ๋จผ์ € ๋‹ค์Œ ์ฝ”๋“œ ์ƒ˜ํ”Œ๊ณผ ๊ฐ™์ด ํ† ํฌ๋‚˜์ด์ € ์ถœ๋ ฅ์„ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ์—ด๋กœ ์ถ”๊ฐ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค:

```py
def tokenize_dataset(data):
    # Keys of the returned dictionary will be added to the dataset as columns
    return tokenizer(data["text"])


dataset = dataset.map(tokenize_dataset)
```

ํ—ˆ๊น… ํŽ˜์ด์Šค ๋ฐ์ดํ„ฐ์…‹์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ๋””์Šคํฌ์— ์ €์žฅ๋˜๋ฏ€๋กœ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ๋Š˜๋ฆฌ์ง€ ์•Š๋Š”๋‹ค๋Š” ์ ์„ ๊ธฐ์–ตํ•˜์„ธ์š”! 
์—ด์ด ์ถ”๊ฐ€๋˜๋ฉด ๋ฐ์ดํ„ฐ์…‹์—์„œ ๋ฐฐ์น˜๋ฅผ ์ŠคํŠธ๋ฆฌ๋ฐํ•˜๊ณ  ๊ฐ ๋ฐฐ์น˜์— ํŒจ๋”ฉ์„ ์ถ”๊ฐ€ํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์— ํŒจ๋”ฉ์„ ์ถ”๊ฐ€ํ•˜๋Š” ๊ฒƒ๋ณด๋‹ค ํŒจ๋”ฉ ํ† ํฐ์˜ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


```py
>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer)
```

์œ„์˜ ์ฝ”๋“œ ์ƒ˜ํ”Œ์—์„œ๋Š” ๋ฐฐ์น˜๊ฐ€ ๋กœ๋“œ๋  ๋•Œ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํŒจ๋”ฉํ•  ์ˆ˜ ์žˆ๋„๋ก `prepare_tf_dataset`์— ํ† ํฌ๋‚˜์ด์ €๋ฅผ ์ „๋‹ฌํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
๋ฐ์ดํ„ฐ์…‹์˜ ๋ชจ๋“  ์ƒ˜ํ”Œ ๊ธธ์ด๊ฐ€ ๊ฐ™๊ณ  ํŒจ๋”ฉ์ด ํ•„์š”ํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ์ด ์ธ์ˆ˜๋ฅผ ๊ฑด๋„ˆ๋›ธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
์ƒ˜ํ”Œ์„ ์ฑ„์šฐ๋Š” ๊ฒƒ๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ์ž‘์—…(์˜ˆ: ๋งˆ์Šคํ‚น๋œ ์–ธ์–ด์˜ ํ† ํฐ ์†์ƒ ๋ชจ๋ธ๋ง)์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ† ํฐ์„ ์†์ƒ์‹œ์ผœ์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ, 
`collate_fn` ์ธ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ˜ํ”Œ ๋ชฉ๋ก์„ ๋ฐฐ์น˜๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ์›ํ•˜๋Š” ์ „์ฒ˜๋ฆฌ๋ฅผ ์ ์šฉํ•  ํ•จ์ˆ˜๋ฅผ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 
[์˜ˆ์‹œ](https://github.com/huggingface/transformers/tree/main/examples) ๋˜๋Š” 
[๋…ธํŠธ๋ถ](https://huggingface.co/docs/transformers/notebooks)์„ ์ฐธ์กฐํ•˜์—ฌ ์ด ์ ‘๊ทผ ๋ฐฉ์‹์ด ์‹ค์ œ๋กœ ์ž‘๋™ํ•˜๋Š” ๋ชจ์Šต์„ ํ™•์ธํ•˜์„ธ์š”.

`tf.data.Dataset`์„ ์ƒ์„ฑํ•œ ํ›„์—๋Š” ์ด์ „๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ชจ๋ธ์„ ์ปดํŒŒ์ผํ•˜๊ณ  ํ›ˆ๋ จ(fit)ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
model.compile(optimizer=Adam(3e-5))

model.fit(tf_dataset)
```

</tf>
</frameworkcontent>

<a id='pytorch_native'></a>

## ๊ธฐ๋ณธ ํŒŒ์ดํ† ์น˜๋กœ ํ›ˆ๋ จํ•˜๊ธฐ[[train-in-native-pytorch]]

<frameworkcontent>
<pt>
<Youtube id="Dh9CL8fyG80"/>

[`Trainer`]๋Š” ํ›ˆ๋ จ ๋ฃจํ”„๋ฅผ ์ฒ˜๋ฆฌํ•˜๋ฉฐ ํ•œ ์ค„์˜ ์ฝ”๋“œ๋กœ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ง์ ‘ ํ›ˆ๋ จ ๋ฃจํ”„๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์„ ์„ ํ˜ธํ•˜๋Š” ์‚ฌ์šฉ์ž์˜ ๊ฒฝ์šฐ, ๊ธฐ๋ณธ PyTorch์—์„œ ๐Ÿค— Transformers ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ์‹œ์ ์—์„œ ๋…ธํŠธ๋ถ์„ ๋‹ค์‹œ ์‹œ์ž‘ํ•˜๊ฑฐ๋‚˜ ๋‹ค์Œ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ํ™•๋ณดํ•ด์•ผ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
del model
del trainer
torch.cuda.empty_cache()
```

๋‹ค์Œ์œผ๋กœ, 'ํ† ํฐํ™”๋œ ๋ฐ์ดํ„ฐ์…‹'์„ ์ˆ˜๋™์œผ๋กœ ํ›„์ฒ˜๋ฆฌํ•˜์—ฌ ํ›ˆ๋ จ๋ จ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์ค€๋น„ํ•ฉ๋‹ˆ๋‹ค.

1. ๋ชจ๋ธ์ด ์›์‹œ ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ํ—ˆ์šฉํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ `text` ์—ด์„ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค:

    ```py
    >>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
    ```

2. ๋ชจ๋ธ์—์„œ ์ธ์ˆ˜์˜ ์ด๋ฆ„์ด `labels`๋กœ ์ง€์ •๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜๋ฏ€๋กœ `label` ์—ด์˜ ์ด๋ฆ„์„ `labels`๋กœ ๋ณ€๊ฒฝํ•ฉ๋‹ˆ๋‹ค:

    ```py
    >>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
    ```

3. ๋ฐ์ดํ„ฐ์…‹์˜ ํ˜•์‹์„ List ๋Œ€์‹  PyTorch ํ…์„œ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋„๋ก ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค:

    ```py
    >>> tokenized_datasets.set_format("torch")
    ```

๊ทธ๋ฆฌ๊ณ  ์•ž์„œ ํ‘œ์‹œ๋œ ๋Œ€๋กœ ๋ฐ์ดํ„ฐ์…‹์˜ ๋” ์ž‘์€ ํ•˜์œ„ ์ง‘ํ•ฉ์„ ์ƒ์„ฑํ•˜์—ฌ ๋ฏธ์„ธ ์กฐ์ • ์†๋„๋ฅผ ๋†’์ž…๋‹ˆ๋‹ค:

```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```

### DataLoader[[dataloader]]

ํ›ˆ๋ จ ๋ฐ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ 'DataLoader'๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๋ฐฐ์น˜๋ฅผ ๋ฐ˜๋ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

```py
>>> from torch.utils.data import DataLoader

>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
```

์˜ˆ์ธก์„ ์œ„ํ•œ ๋ ˆ์ด๋ธ” ๊ฐœ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๋กœ๋“œํ•ฉ๋‹ˆ๋‹ค:

```py
>>> from transformers import AutoModelForSequenceClassification

>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```

### ์˜ตํ‹ฐ๋งˆ์ด์ € ๋ฐ ํ•™์Šต ์†๋„ ์Šค์ผ€์ค„๋Ÿฌ[[optimizer-and-learning-rate-scheduler]]

์˜ตํ‹ฐ๋งˆ์ด์ €์™€ ํ•™์Šต ์†๋„ ์Šค์ผ€์ค„๋Ÿฌ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ๋ชจ๋ธ์„ ๋ฏธ์„ธ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ํŒŒ์ดํ† ์น˜์—์„œ ์ œ๊ณตํ•˜๋Š” [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) ์˜ตํ‹ฐ๋งˆ์ด์ €๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค:

```py
>>> from torch.optim import AdamW

>>> optimizer = AdamW(model.parameters(), lr=5e-5)
```

[`Trainer`]์—์„œ ๊ธฐ๋ณธ ํ•™์Šต ์†๋„ ์Šค์ผ€์ค„๋Ÿฌ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค:

```py
>>> from transformers import get_scheduler

>>> num_epochs = 3
>>> num_training_steps = num_epochs * len(train_dataloader)
>>> lr_scheduler = get_scheduler(
...     name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
... )
```

๋งˆ์ง€๋ง‰์œผ๋กœ, GPU์— ์•ก์„ธ์Šคํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ 'device'๋ฅผ ์ง€์ •ํ•˜์—ฌ GPU๋ฅผ ์‚ฌ์šฉํ•˜๋„๋ก ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ ‡์ง€ ์•Š์œผ๋ฉด CPU์—์„œ ํ›ˆ๋ จํ•˜๋ฉฐ ๋ช‡ ๋ถ„์ด ์•„๋‹Œ ๋ช‡ ์‹œ๊ฐ„์ด ๊ฑธ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

```py
>>> import torch

>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
>>> model.to(device)
```

<Tip>

[Colaboratory](https://colab.research.google.com/) ๋˜๋Š” [SageMaker StudioLab](https://studiolab.sagemaker.aws/)๊ณผ ๊ฐ™์€ ํ˜ธ์ŠคํŒ… ๋…ธํŠธ๋ถ์ด ์—†๋Š” ๊ฒฝ์šฐ ํด๋ผ์šฐ๋“œ GPU์— ๋ฌด๋ฃŒ๋กœ ์•ก์„ธ์Šคํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

</Tip>

์ด์ œ ํ›ˆ๋ จํ•  ์ค€๋น„๊ฐ€ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค! ๐Ÿฅณ

### ํ›ˆ๋ จ ๋ฃจํ”„[[training-loop]]

ํ›ˆ๋ จ ์ง„ํ–‰ ์ƒํ™ฉ์„ ์ถ”์ ํ•˜๋ ค๋ฉด [tqdm](https://tqdm.github.io/) ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํŠธ๋ ˆ์ด๋‹ ๋‹จ๊ณ„ ์ˆ˜์— ์ง„ํ–‰๋ฅ  ํ‘œ์‹œ์ค„์„ ์ถ”๊ฐ€ํ•˜์„ธ์š”:

```py
>>> from tqdm.auto import tqdm

>>> progress_bar = tqdm(range(num_training_steps))

>>> model.train()
>>> for epoch in range(num_epochs):
...     for batch in train_dataloader:
...         batch = {k: v.to(device) for k, v in batch.items()}
...         outputs = model(**batch)
...         loss = outputs.loss
...         loss.backward()

...         optimizer.step()
...         lr_scheduler.step()
...         optimizer.zero_grad()
...         progress_bar.update(1)
```

### ํ‰๊ฐ€ ํ•˜๊ธฐ[[evaluate]]

[`Trainer`]์— ํ‰๊ฐ€ ํ•จ์ˆ˜๋ฅผ ์ถ”๊ฐ€ํ•œ ๋ฐฉ๋ฒ•๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, ํ›ˆ๋ จ ๋ฃจํ”„๋ฅผ ์ง์ ‘ ์ž‘์„ฑํ•  ๋•Œ๋„ ๋™์ผํ•œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋ฒˆ์—๋Š” ๊ฐ ์—ํฌํฌ๊ฐ€ ๋๋‚  ๋•Œ๋งˆ๋‹ค ํ‰๊ฐ€์ง€ํ‘œ๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๋ณด๊ณ ํ•˜๋Š” ๋Œ€์‹ , [`~evaluate.add_batch`]๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋“  ๋ฐฐ์น˜๋ฅผ ๋ˆ„์ ํ•˜๊ณ  ๋งจ ๋งˆ์ง€๋ง‰์— ํ‰๊ฐ€์ง€ํ‘œ๋ฅผ ๊ณ„์‚ฐํ•ฉ๋‹ˆ๋‹ค.

```py
>>> import evaluate

>>> metric = evaluate.load("accuracy")
>>> model.eval()
>>> for batch in eval_dataloader:
...     batch = {k: v.to(device) for k, v in batch.items()}
...     with torch.no_grad():
...         outputs = model(**batch)

...     logits = outputs.logits
...     predictions = torch.argmax(logits, dim=-1)
...     metric.add_batch(predictions=predictions, references=batch["labels"])

>>> metric.compute()
```
</pt>
</frameworkcontent>

<a id='additional-resources'></a>

## ์ถ”๊ฐ€ ์ž๋ฃŒ[[additional-resources]]

๋” ๋งŽ์€ ๋ฏธ์„ธ ํŠœ๋‹ ์˜ˆ์ œ๋Š” ๋‹ค์Œ์„ ์ฐธ์กฐํ•˜์„ธ์š”:

- [๐Ÿค— Trnasformers ์˜ˆ์ œ](https://github.com/huggingface/transformers/tree/main/examples)์—๋Š” PyTorch ๋ฐ ํ…์„œํ”Œ๋กœ์šฐ์—์„œ ์ผ๋ฐ˜์ ์ธ NLP ์ž‘์—…์„ ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ๋Š” ์Šคํฌ๋ฆฝํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

- [๐Ÿค— Transformers ๋…ธํŠธ๋ถ](notebooks)์—๋Š” PyTorch ๋ฐ ํ…์„œํ”Œ๋กœ์šฐ์—์„œ ํŠน์ • ์ž‘์—…์„ ์œ„ํ•ด ๋ชจ๋ธ์„ ๋ฏธ์„ธ ํŠœ๋‹ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ๋…ธํŠธ๋ถ์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.