Spaces:
Runtime error
Runtime error
File size: 126,198 Bytes
96e9536 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import List
from transformers import (
AddedToken,
LayoutLMv3TokenizerFast,
SpecialTokensMixin,
is_tf_available,
is_torch_available,
logging,
)
from transformers.models.layoutlmv3.tokenization_layoutlmv3 import VOCAB_FILES_NAMES, LayoutLMv3Tokenizer
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_pandas,
require_tf,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import SMALL_TRAINING_CORPUS, TokenizerTesterMixin, merge_model_tokenizer_mappings
logger = logging.get_logger(__name__)
@require_tokenizers
@require_pandas
class LayoutLMv3TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LayoutLMv3Tokenizer
rust_tokenizer_class = LayoutLMv3TokenizerFast
test_rust_tokenizer = True
# determined by the tokenization algortihm and the way it's decoded by the fast tokenizers
space_between_special_tokens = False
test_seq2seq = False
from_pretrained_kwargs = {"cls_token": "<s>"}
def get_words_and_boxes(self):
words = ["lower", "newer"]
boxes = [[423, 237, 440, 251], [427, 272, 441, 287]]
return words, boxes
def get_words_and_boxes_batch(self):
words = [["lower", "newer"], ["new", "low"]]
boxes = [
[[423, 237, 440, 251], [427, 272, 441, 287]],
[[961, 885, 992, 912], [256, 38, 330, 58]],
]
return words, boxes
def get_question_words_and_boxes(self):
question = "what's his name?"
words = ["lower", "newer"]
boxes = [[423, 237, 440, 251], [427, 272, 441, 287]]
return question, words, boxes
def get_question_words_and_boxes_batch(self):
questions = ["what's his name?", "how is he called?"]
words = [["lower", "newer"], ["newer", "lower"]]
boxes = [
[[423, 237, 440, 251], [427, 272, 441, 287]],
[[256, 38, 330, 58], [256, 38, 330, 58]],
]
return questions, words, boxes
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return LayoutLMv3TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["Ġlow", "er", "Ġ", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text) # , add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("microsoft/layoutlmv3-base")
question, words, boxes = self.get_question_words_and_boxes()
text = tokenizer.encode(
question.split(),
boxes=[tokenizer.pad_token_box for _ in range(len(question.split()))],
add_special_tokens=False,
)
text_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_pair == [0] + text + [2] + [2] + text_2 + [2]
def test_add_special_tokens(self):
tokenizers: List[LayoutLMv3Tokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
special_token = "[SPECIAL_TOKEN]"
special_token_box = [1000, 1000, 1000, 1000]
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(
[special_token], boxes=[special_token_box], add_special_tokens=False
)
self.assertEqual(len(encoded_special_token), 1)
decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True)
self.assertTrue(special_token not in decoded)
def test_add_tokens_tokenizer(self):
tokenizers: List[LayoutLMv3Tokenizer] = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
vocab_size = tokenizer.vocab_size
all_size = len(tokenizer)
self.assertNotEqual(vocab_size, 0)
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
new_toks = ["aaaaa", "bbbbbb", "cccccccccdddddddd"]
added_toks = tokenizer.add_tokens(new_toks)
vocab_size_2 = tokenizer.vocab_size
all_size_2 = len(tokenizer)
self.assertNotEqual(vocab_size_2, 0)
self.assertEqual(vocab_size, vocab_size_2)
self.assertEqual(added_toks, len(new_toks))
self.assertEqual(all_size_2, all_size + len(new_toks))
words = "aaaaa bbbbbb low cccccccccdddddddd l".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertGreaterEqual(len(tokens), 4)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
vocab_size_3 = tokenizer.vocab_size
all_size_3 = len(tokenizer)
self.assertNotEqual(vocab_size_3, 0)
self.assertEqual(vocab_size, vocab_size_3)
self.assertEqual(added_toks_2, len(new_toks_2))
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
words = ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
tokens = tokenizer.encode(
words,
boxes=boxes,
add_special_tokens=False,
)
self.assertGreaterEqual(len(tokens), 6)
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
self.assertGreater(tokens[0], tokens[1])
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
self.assertGreater(tokens[-2], tokens[-3])
self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
@require_tokenizers
def test_encode_decode_with_spaces(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
tokenizer.add_tokens(new_toks)
input = "[ABC][DEF][ABC][DEF]"
if self.space_between_special_tokens:
output = "[ABC] [DEF] [ABC] [DEF]"
else:
output = input
encoded = tokenizer.encode(input.split(), boxes=boxes, add_special_tokens=False)
decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
self.assertIn(decoded, [output, output.lower()])
@unittest.skip("Not implemented")
def test_right_and_left_truncation(self):
pass
@unittest.skip("Not implemented")
def test_split_special_tokens(self):
pass
def test_encode_plus_with_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
padding_size = 10
padding_idx = tokenizer.pad_token_id
encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_special_tokens_mask=True)
input_ids = encoded_sequence["input_ids"]
special_tokens_mask = encoded_sequence["special_tokens_mask"]
sequence_length = len(input_ids)
# Test 'longest' and 'no_padding' don't do anything
tokenizer.padding_side = "right"
not_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertTrue(sequence_length == not_padded_sequence_length)
self.assertTrue(input_ids == not_padded_input_ids)
self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask)
not_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
padding=False,
return_special_tokens_mask=True,
)
not_padded_input_ids = not_padded_sequence["input_ids"]
not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
not_padded_sequence_length = len(not_padded_input_ids)
self.assertTrue(sequence_length == not_padded_sequence_length)
self.assertTrue(input_ids == not_padded_input_ids)
self.assertTrue(special_tokens_mask == not_padded_special_tokens_mask)
# Test right padding
tokenizer.padding_side = "right"
right_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
right_padded_input_ids = right_padded_sequence["input_ids"]
right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
right_padded_sequence_length = len(right_padded_input_ids)
self.assertTrue(sequence_length + padding_size == right_padded_sequence_length)
self.assertTrue(input_ids + [padding_idx] * padding_size == right_padded_input_ids)
self.assertTrue(special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask)
# Test left padding
tokenizer.padding_side = "left"
left_padded_sequence = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=sequence_length + padding_size,
padding="max_length",
return_special_tokens_mask=True,
)
left_padded_input_ids = left_padded_sequence["input_ids"]
left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
left_padded_sequence_length = len(left_padded_input_ids)
self.assertTrue(sequence_length + padding_size == left_padded_sequence_length)
self.assertTrue([padding_idx] * padding_size + input_ids == left_padded_input_ids)
self.assertTrue([1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask)
if "token_type_ids" in tokenizer.model_input_names:
token_type_ids = encoded_sequence["token_type_ids"]
left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
right_padded_token_type_ids = right_padded_sequence["token_type_ids"]
assert token_type_ids + [0] * padding_size == right_padded_token_type_ids
assert [0] * padding_size + token_type_ids == left_padded_token_type_ids
if "attention_mask" in tokenizer.model_input_names:
attention_mask = encoded_sequence["attention_mask"]
right_padded_attention_mask = right_padded_sequence["attention_mask"]
left_padded_attention_mask = left_padded_sequence["attention_mask"]
self.assertTrue(attention_mask + [0] * padding_size == right_padded_attention_mask)
self.assertTrue([0] * padding_size + attention_mask == left_padded_attention_mask)
def test_internal_consistency(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
tokens = []
for word in words:
tokens.extend(tokenizer.tokenize(word))
ids = tokenizer.convert_tokens_to_ids(tokens)
ids_2 = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertListEqual(ids, ids_2)
tokens_2 = tokenizer.convert_ids_to_tokens(ids)
self.assertNotEqual(len(tokens_2), 0)
text_2 = tokenizer.decode(ids)
self.assertIsInstance(text_2, str)
output_text = " lower newer"
self.assertEqual(text_2, output_text)
def test_mask_output(self):
tokenizers = self.get_tokenizers(fast=False, do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
if (
tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
and "token_type_ids" in tokenizer.model_input_names
):
information = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True)
sequences, mask = information["input_ids"], information["token_type_ids"]
self.assertEqual(len(sequences), len(mask))
def test_number_of_added_tokens(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# test 1: single sequence
words, boxes = self.get_words_and_boxes()
sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
attached_sequences = tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
# Method is implemented (e.g. not GPT-2)
if len(attached_sequences) != 2:
self.assertEqual(
tokenizer.num_special_tokens_to_add(pair=False), len(attached_sequences) - len(sequences)
)
# test 2: two sequences
question, words, boxes = self.get_question_words_and_boxes()
sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=False)
attached_sequences = tokenizer.encode(question, words, boxes=boxes, add_special_tokens=True)
# Method is implemented (e.g. not GPT-2)
if len(attached_sequences) != 2:
self.assertEqual(
tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
)
def test_padding_to_max_length(self):
"""We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated"""
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
padding_idx = tokenizer.pad_token_id
# Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
# FIXME: the next line should be padding(max_length) to avoid warning
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, pad_to_max_length=True
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence
# Check that nothing is done when a maximum length is not specified
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes, pad_to_max_length=True)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
def test_padding(self, max_length=50):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
# Encode - Simple input
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode(words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode(words, boxes=boxes, padding=True)
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode - Pair input
question, words, boxes = self.get_question_words_and_boxes()
input_r = tokenizer_r.encode(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode(question, words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(question, words, boxes=boxes, padding=True)
input_p = tokenizer_p.encode(question, words, boxes=boxes, padding="longest")
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode_plus - Simple input
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode_plus(words, boxes=boxes, padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
# Encode_plus - Pair input
question, words, boxes = self.get_question_words_and_boxes()
input_r = tokenizer_r.encode_plus(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
question, words, boxes=boxes, max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(
question, words, boxes=boxes, max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
question, words, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
input_r = tokenizer_r.encode_plus(question, words, boxes=boxes, padding="longest")
input_p = tokenizer_p.encode_plus(question, words, boxes=boxes, padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
# Batch_encode_plus - Simple input
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
pad_to_max_length=True,
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
pad_to_max_length=True,
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding="longest",
)
input_p = tokenizer_p.batch_encode_plus(
words,
boxes=boxes,
max_length=max_length,
padding=True,
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes, padding="longest")
input_p = tokenizer_p.batch_encode_plus(words, boxes=boxes, padding=True)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Batch_encode_plus - Pair input
questions, words, boxes = self.get_question_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
max_length=max_length,
truncation=True,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
max_length=max_length,
truncation=True,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
padding=True,
)
input_p = tokenizer_p.batch_encode_plus(
list(zip(questions, words)),
is_pair=True,
boxes=boxes,
padding="longest",
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad on single examples after tokenization
words, boxes = self.get_words_and_boxes()
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.encode_plus(words, boxes=boxes)
input_p = tokenizer_r.pad(input_p)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.encode_plus(words, boxes=boxes)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
# Using pad after tokenization
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_p = tokenizer_r.pad(input_p)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad after tokenization
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.batch_encode_plus(
words,
boxes=boxes,
)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
def test_padding_warning_message_fast_tokenizer(self):
if not self.test_rust_tokenizer:
return
words, boxes = self.get_words_and_boxes_batch()
tokenizer_fast = self.get_rust_tokenizer()
encoding_fast = tokenizer_fast(
words,
boxes=boxes,
)
with self.assertLogs("transformers", level="WARNING") as cm:
tokenizer_fast.pad(encoding_fast)
self.assertEqual(len(cm.records), 1)
self.assertIn(
"Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to"
" encode the text followed by a call to the `pad` method to get a padded encoding.",
cm.records[0].message,
)
if not self.test_slow_tokenizer:
return
tokenizer_slow = self.get_tokenizer()
encoding_slow = tokenizer_slow(
words,
boxes=boxes,
)
with self.assertLogs(level="WARNING") as cm:
# We want to assert there are no warnings, but the 'assertLogs' method does not support that.
# Therefore, we are adding a dummy warning, and then we will assert it is the only warning.
logger.warning("Dummy warning")
tokenizer_slow.pad(encoding_slow)
self.assertEqual(len(cm.records), 1)
self.assertIn(
"Dummy warning",
cm.records[0].message,
)
def test_call(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Test not batched
words, boxes = self.get_words_and_boxes()
encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test not batched pairs
question, words, boxes = self.get_question_words_and_boxes()
encoded_sequences_1 = tokenizer.encode_plus(words, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
# Test batched
words, boxes = self.get_words_and_boxes_batch()
encoded_sequences_1 = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes)
encoded_sequences_2 = tokenizer(words, boxes=boxes)
self.assertEqual(encoded_sequences_1, encoded_sequences_2)
def test_batch_encode_plus_batch_sequence_length(self):
# Tests that all encoded values have the correct size
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
encoded_sequences = [
tokenizer.encode_plus(words_example, boxes=boxes_example)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(words, is_pair=False, boxes=boxes, padding=False)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
maximum_length = len(
max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
)
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences_padded = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=maximum_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch_padded = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=True
)
self.assertListEqual(
encoded_sequences_padded,
self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
)
# check 'longest' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=True
)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding="longest"
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
# check 'no_padding' is unsensitive to a max length
encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, padding=False
)
encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=maximum_length + 10, padding=False
)
for key in encoded_sequences_batch_padded_1.keys():
self.assertListEqual(
encoded_sequences_batch_padded_1[key],
encoded_sequences_batch_padded_2[key],
)
@unittest.skip("batch_encode_plus does not handle overflowing tokens.")
def test_batch_encode_plus_overflowing_tokens(self):
pass
def test_batch_encode_plus_padding(self):
# Test that padded sequences are equivalent between batch_encode_plus and encode_plus
# Right padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=max_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
# Left padding tests
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
tokenizer.padding_side = "left"
words, boxes = self.get_words_and_boxes_batch()
max_length = 100
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, words)
encoded_sequences = [
tokenizer.encode_plus(
words_example, boxes=boxes_example, max_length=max_length, padding="max_length"
)
for words_example, boxes_example in zip(words, boxes)
]
encoded_sequences_batch = tokenizer.batch_encode_plus(
words, is_pair=False, boxes=boxes, max_length=max_length, padding="max_length"
)
self.assertListEqual(
encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
)
def test_padding_to_multiple_of(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
words, boxes = self.get_words_and_boxes()
# empty_tokens = tokenizer([""], [[]], padding=True, pad_to_multiple_of=8)
normal_tokens = tokenizer(words, boxes=boxes, padding=True, pad_to_multiple_of=8)
# for key, value in empty_tokens.items():
# self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
normal_tokens = tokenizer(words, boxes=boxes, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = tokenizer(words, boxes=boxes, padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# truncation to something which is not a multiple of pad_to_multiple_of raises an error
self.assertRaises(
ValueError,
tokenizer.__call__,
words,
boxes=boxes,
padding=True,
truncation=True,
max_length=12,
pad_to_multiple_of=8,
)
def test_tokenizer_slow_store_full_signature(self):
signature = inspect.signature(self.tokenizer_class.__init__)
tokenizer = self.get_tokenizer()
for parameter_name, parameter in signature.parameters.items():
if parameter.default != inspect.Parameter.empty:
self.assertIn(parameter_name, tokenizer.init_kwargs)
def test_build_inputs_with_special_tokens(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
# Input tokens id
words, boxes = self.get_words_and_boxes()
input_simple = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False)
input_pair = tokenizer_p.encode(words, boxes=boxes, add_special_tokens=False)
# Generate output
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
self.assertEqual(output_p, output_r)
# Generate pair output
output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
self.assertEqual(output_p, output_r)
def test_special_tokens_mask_input_pairs(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
return_special_tokens_mask=True,
# add_prefix_space=False,
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
]
filtered_sequence = [x for x in filtered_sequence if x is not None]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_special_tokens_mask(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
# Testing single inputs
encoded_sequence = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(
words, boxes=boxes, add_special_tokens=True, return_special_tokens_mask=True
)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
self.assertEqual(encoded_sequence, filtered_sequence)
def test_save_and_load_tokenizer(self):
# safety check on max_len default value so we are sure the test works
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
self.assertNotEqual(tokenizer.model_max_length, 42)
# Now let's start the test
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Isolate this from the other tests because we save additional tokens/etc
words, boxes = self.get_words_and_boxes()
tmpdirname = tempfile.mkdtemp()
before_tokens = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
before_vocab = tokenizer.get_vocab()
tokenizer.save_pretrained(tmpdirname)
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
after_tokens = after_tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
after_vocab = after_tokenizer.get_vocab()
self.assertListEqual(before_tokens, after_tokens)
self.assertDictEqual(before_vocab, after_vocab)
shutil.rmtree(tmpdirname)
def test_right_and_left_padding(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
sequence = "Sequence"
padding_size = 10
# check correct behaviour if no pad_token_id exists and add it eventually
self._check_no_pad_token_padding(tokenizer, sequence)
padding_idx = tokenizer.pad_token_id
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "right"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
tokenizer.padding_side = "left"
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
padded_sequence = tokenizer.encode(
words, boxes=boxes, max_length=sequence_length + padding_size, padding="max_length"
)
padded_sequence_length = len(padded_sequence)
assert sequence_length + padding_size == padded_sequence_length
assert [padding_idx] * padding_size + encoded_sequence == padded_sequence
# RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
encoded_sequence = tokenizer.encode(words, boxes=boxes)
sequence_length = len(encoded_sequence)
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes, padding=True)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding="longest")
padded_sequence_left_length = len(padded_sequence_left)
assert sequence_length == padded_sequence_left_length
assert encoded_sequence == padded_sequence_left
tokenizer.padding_side = "right"
padded_sequence_right = tokenizer.encode(words, boxes=boxes)
padded_sequence_right_length = len(padded_sequence_right)
assert sequence_length == padded_sequence_right_length
assert encoded_sequence == padded_sequence_right
tokenizer.padding_side = "left"
padded_sequence_left = tokenizer.encode(words, boxes=boxes, padding=False)
padded_sequence_left_length = len(padded_sequence_left)
assert sequence_length == padded_sequence_left_length
assert encoded_sequence == padded_sequence_left
def test_token_type_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# test 1: single sequence
words, boxes = self.get_words_and_boxes()
output = tokenizer(words, boxes=boxes, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
# Assert that the token type IDs have the same length as the attention mask
self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"]))
self.assertIn(0, output["token_type_ids"])
self.assertNotIn(1, output["token_type_ids"])
# test 2: two sequences (question + words)
question, words, boxes = self.get_question_words_and_boxes()
output = tokenizer(question, words, boxes, return_token_type_ids=True)
# Assert that the token type IDs have the same length as the input IDs
self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"]))
# Assert that the token type IDs have the same length as the attention mask
self.assertEqual(len(output["token_type_ids"]), len(output["attention_mask"]))
self.assertIn(0, output["token_type_ids"])
def test_offsets_mapping(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
text = ["a", "wonderful", "test"]
boxes = [[1, 8, 12, 20] for _ in range(len(text))]
# No pair
tokens_with_offsets = tokenizer_r.encode_plus(
text,
boxes=boxes,
return_special_tokens_mask=True,
return_offsets_mapping=True,
add_special_tokens=True,
)
added_tokens = tokenizer_r.num_special_tokens_to_add(False)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
# Pairs
text = "what's his name"
pair = ["a", "wonderful", "test"]
boxes = [[1, 8, 12, 20] for _ in range(len(pair))]
tokens_with_offsets = tokenizer_r.encode_plus(
text,
pair,
boxes=boxes,
return_special_tokens_mask=True,
return_offsets_mapping=True,
add_special_tokens=True,
)
added_tokens = tokenizer_r.num_special_tokens_to_add(True)
offsets = tokens_with_offsets["offset_mapping"]
# Assert there is the same number of tokens and offsets
self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))
# Assert there is online added_tokens special_tokens
self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)
@require_torch
@slow
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import MODEL_MAPPING, TOKENIZER_MAPPING
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
return
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
config = config_class()
if config.is_encoder_decoder or config.pad_token_id is None:
return
model = model_class(config)
# Make sure the model contains at least the full vocabulary size in its embedding matrix
is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
assert (
(model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
if is_using_common_embeddings
else True
)
# Build sequence
words, boxes = self.get_words_and_boxes()
encoded_sequence = tokenizer.encode_plus(words, boxes=boxes, return_tensors="pt")
batch_encoded_sequence = tokenizer.batch_encode_plus(
[words, words], boxes=[boxes, boxes], return_tensors="pt"
)
# We add dummy pixel_values keys (as LayoutLMv3 actually also requires a feature extractor
# to prepare the image input)
encoded_sequence["pixel_values"] = torch.randn(1, 3, 224, 224)
batch_encoded_sequence["pixel_values"] = torch.randn(2, 3, 224, 224)
# This should not fail
with torch.no_grad(): # saves some time
model(**encoded_sequence)
model(**batch_encoded_sequence)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
words, boxes = self.get_words_and_boxes()
ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
rust_ids = rust_tokenizer.encode(words, boxes=boxes, add_special_tokens=True)
self.assertListEqual(ids, rust_ids)
def test_tokenization_python_rust_equals(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
words, boxes = self.get_words_and_boxes()
# Ensure basic input match
input_p = tokenizer_p.encode_plus(words, boxes=boxes)
input_r = tokenizer_r.encode_plus(words, boxes=boxes)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key])
input_pairs_p = tokenizer_p.encode_plus(words, boxes=boxes)
input_pairs_r = tokenizer_r.encode_plus(words, boxes=boxes)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
words = ["hello" for _ in range(1000)]
boxes = [[1000, 1000, 1000, 1000] for _ in range(1000)]
# Ensure truncation match
input_p = tokenizer_p.encode_plus(words, boxes=boxes, max_length=512, truncation=True)
input_r = tokenizer_r.encode_plus(words, boxes=boxes, max_length=512, truncation=True)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key])
# Ensure truncation with stride match
input_p = tokenizer_p.encode_plus(
words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
)
input_r = tokenizer_r.encode_plus(
words, boxes=boxes, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
)
for key in filter(
lambda x: x in ["input_ids", "token_type_ids", "attention_mask", "bbox"], input_p.keys()
):
self.assertSequenceEqual(input_p[key], input_r[key][0])
def test_embeded_special_tokens(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
words, boxes = self.get_words_and_boxes()
tokens_r = tokenizer_r.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
)
tokens_p = tokenizer_p.encode_plus(
words,
boxes=boxes,
add_special_tokens=True,
)
for key in tokens_p.keys():
self.assertEqual(tokens_r[key], tokens_p[key])
if "token_type_ids" in tokens_r:
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
self.assertSequenceEqual(tokens_r, tokens_p)
def test_compare_add_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
words, boxes = self.get_words_and_boxes()
# tokenize()
no_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=False)
with_special_tokens = tokenizer_r.tokenize(" ".join(words), add_special_tokens=True)
self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)
# encode()
no_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.encode(words, boxes=boxes, add_special_tokens=True)
self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)
# encode_plus()
no_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.encode_plus(words, boxes=boxes, add_special_tokens=True)
for key in no_special_tokens.keys():
self.assertEqual(
len(no_special_tokens[key]),
len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
)
# # batch_encode_plus
words, boxes = self.get_words_and_boxes_batch()
no_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=False)
with_special_tokens = tokenizer_r.batch_encode_plus(words, boxes=boxes, add_special_tokens=True)
for key in no_special_tokens.keys():
for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)
@slow
def test_layoutlmv3_truncation_integration_test(self):
words, boxes = self.get_words_and_boxes()
tokenizer = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base", model_max_length=512)
for i in range(12, 512):
new_encoded_inputs = tokenizer.encode(words, boxes=boxes, max_length=i, truncation=True)
# Ensure that the input IDs are less than the max length defined.
self.assertLessEqual(len(new_encoded_inputs), i)
tokenizer.model_max_length = 20
new_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True)
dropped_encoded_inputs = tokenizer.encode(words, boxes=boxes, truncation=True)
# Ensure that the input IDs are still truncated when no max_length is specified
self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs)
self.assertLessEqual(len(new_encoded_inputs), 20)
@is_pt_tf_cross_test
def test_batch_encode_plus_tensors(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes_batch()
# A Tensor cannot be build by sequences which are not the same size
self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="pt")
self.assertRaises(ValueError, tokenizer.batch_encode_plus, words, boxes=boxes, return_tensors="tf")
if tokenizer.pad_token_id is None:
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
words,
boxes=boxes,
padding=True,
return_tensors="pt",
)
self.assertRaises(
ValueError,
tokenizer.batch_encode_plus,
words,
boxes=boxes,
padding="longest",
return_tensors="tf",
)
else:
pytorch_tensor = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True, return_tensors="pt")
tensorflow_tensor = tokenizer.batch_encode_plus(
words, boxes=boxes, padding="longest", return_tensors="tf"
)
encoded_sequences = tokenizer.batch_encode_plus(words, boxes=boxes, padding=True)
for key in encoded_sequences.keys():
pytorch_value = pytorch_tensor[key].tolist()
tensorflow_value = tensorflow_tensor[key].numpy().tolist()
encoded_value = encoded_sequences[key]
self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
def test_sequence_ids(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
if not tokenizer.is_fast:
continue
with self.subTest(f"{tokenizer.__class__.__name__}"):
seq_0 = "Test this method."
seq_1 = ["With", "these", "inputs."]
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(seq_1))]
# We want to have sequence 0 and sequence 1 are tagged
# respectively with 0 and 1 token_ids
# (regardless of whether the model use token type ids)
# We use this assumption in the QA pipeline among other place
output = tokenizer(seq_0.split(), boxes=boxes)
self.assertIn(0, output.sequence_ids())
output = tokenizer(seq_0, seq_1, boxes=boxes)
self.assertIn(0, output.sequence_ids())
self.assertIn(1, output.sequence_ids())
if tokenizer.num_special_tokens_to_add(pair=True):
self.assertIn(None, output.sequence_ids())
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
words = "Hey this is a <special> token".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
r_output = tokenizer_r.encode(words, boxes=boxes)
special_token_id = tokenizer_r.encode(
["<special>"], boxes=[1000, 1000, 1000, 1000], add_special_tokens=False
)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
words = "Hey this is a <special> token".split()
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
p_output = tokenizer_p.encode(words, boxes=boxes)
cr_output = tokenizer_cr.encode(words, boxes=boxes)
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
def test_training_new_tokenizer(self):
# This feature only exists for fast tokenizers
if not self.test_rust_tokenizer:
return
tokenizer = self.get_rust_tokenizer()
new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)
# Test we can use the new tokenizer with something not seen during training
text = [["this", "is", "the"], ["how", "are", "you"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8], [1, 3, 4, 8]], [[5, 6, 7, 8], [4, 5, 6, 7], [3, 9, 2, 7]]]
inputs = new_tokenizer(text, boxes=boxes)
self.assertEqual(len(inputs["input_ids"]), 2)
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
expected_result = " this is the"
if tokenizer.backend_tokenizer.normalizer is not None:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
# We check that the parameters of the tokenizer remained the same
# Check we have the same number of added_tokens for both pair and non-pair inputs.
self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)
# Assert the set of special tokens match as we didn't ask to change them
self.assertSequenceEqual(
tokenizer.all_special_tokens_extended,
new_tokenizer.all_special_tokens_extended,
)
self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)
def test_training_new_tokenizer_with_special_tokens_change(self):
# This feature only exists for fast tokenizers
if not self.test_rust_tokenizer:
return
tokenizer = self.get_rust_tokenizer()
# Test with a special tokens map
class_signature = inspect.signature(tokenizer.__class__)
if "cls_token" in class_signature.parameters:
new_tokenizer = tokenizer.train_new_from_iterator(
SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
)
cls_id = new_tokenizer.get_vocab()["<cls>"]
self.assertEqual(new_tokenizer.cls_token, "<cls>")
self.assertEqual(new_tokenizer.cls_token_id, cls_id)
# Create a new mapping from the special tokens defined in the original tokenizer
special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
special_tokens_list.remove("additional_special_tokens")
special_tokens_map = {}
for token in special_tokens_list:
# Get the private one to avoid unnecessary warnings.
if getattr(tokenizer, f"_{token}") is not None:
special_token = getattr(tokenizer, token)
special_tokens_map[special_token] = f"{special_token}a"
# Train new tokenizer
new_tokenizer = tokenizer.train_new_from_iterator(
SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
)
# Check the changes
for token in special_tokens_list:
# Get the private one to avoid unnecessary warnings.
if getattr(tokenizer, f"_{token}") is None:
continue
special_token = getattr(tokenizer, token)
if special_token in special_tokens_map:
new_special_token = getattr(new_tokenizer, token)
self.assertEqual(special_tokens_map[special_token], new_special_token)
new_id = new_tokenizer.get_vocab()[new_special_token]
self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)
# Check if the AddedToken / string format has been kept
for special_token in tokenizer.all_special_tokens_extended:
if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
# The special token must appear identically in the list of the new tokenizer.
self.assertTrue(
special_token in new_tokenizer.all_special_tokens_extended,
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
)
elif isinstance(special_token, AddedToken):
# The special token must appear in the list of the new tokenizer as an object of type AddedToken with
# the same parameters as the old AddedToken except the content that the user has requested to change.
special_token_str = special_token.content
new_special_token_str = special_tokens_map[special_token_str]
find = False
for candidate in new_tokenizer.all_special_tokens_extended:
if (
isinstance(candidate, AddedToken)
and candidate.content == new_special_token_str
and candidate.lstrip == special_token.lstrip
and candidate.rstrip == special_token.rstrip
and candidate.normalized == special_token.normalized
and candidate.single_word == special_token.single_word
):
find = True
break
self.assertTrue(
find,
f"'{new_special_token_str}' doesn't appear in the list "
f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as "
f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}",
)
elif special_token not in special_tokens_map:
# The special token must appear identically in the list of the new tokenizer.
self.assertTrue(
special_token in new_tokenizer.all_special_tokens_extended,
f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
)
else:
# The special token must appear in the list of the new tokenizer as an object of type string.
self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)
# Test we can use the new tokenizer with something not seen during training
words = [["this", "is"], ["hello", "🤗"]]
boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[1, 2, 3, 4], [5, 6, 7, 8]]]
inputs = new_tokenizer(words, boxes=boxes)
self.assertEqual(len(inputs["input_ids"]), 2)
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
expected_result = " this is"
if tokenizer.backend_tokenizer.normalizer is not None:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
def test_prepare_for_model(self):
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
# only test prepare_for_model for the slow tokenizer
if tokenizer.__class__.__name__ == "LayoutLMv3TokenizerFast":
continue
with self.subTest(f"{tokenizer.__class__.__name__}"):
words, boxes = self.get_words_and_boxes()
prepared_input_dict = tokenizer.prepare_for_model(words, boxes=boxes, add_special_tokens=True)
input_dict = tokenizer.encode_plus(words, boxes=boxes, add_special_tokens=True)
self.assertEqual(input_dict, prepared_input_dict)
def test_padding_different_model_input_name(self):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
words, boxes = self.get_words_and_boxes_batch()
input_r = tokenizer_r.batch_encode_plus(words, boxes=boxes)
input_p = tokenizer_r.batch_encode_plus(words, boxes=boxes)
# rename encoded batch to "inputs"
input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
del input_r[tokenizer_r.model_input_names[0]]
input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
del input_p[tokenizer_p.model_input_names[0]]
# Renaming `input_ids` to `inputs`
tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]
input_r = tokenizer_r.pad(input_r, padding="longest")
input_p = tokenizer_r.pad(input_p, padding="longest")
max_length = len(input_p["inputs"][0])
self.assert_batch_padded_input_match(
input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
)
def test_batch_encode_dynamic_overflowing(self):
"""
When calling batch_encode with multiple sequences, it can return different number of
overflowing encoding for each sequence:
[
Sequence 1: [Encoding 1, Encoding 2],
Sequence 2: [Encoding 1],
Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
]
This needs to be padded so that it can represented as a tensor
"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
if is_torch_available():
returned_tensor = "pt"
elif is_tf_available():
returned_tensor = "tf"
else:
returned_tensor = "jax"
# Single example
words = ["HuggingFace", "is", "solving", "NLP", "one", "commit", "at", "a", "time"]
boxes = [[i, i, i, i] for i in range(len(words))]
tokens = tokenizer.encode_plus(
words,
boxes=boxes,
max_length=6,
padding=True,
truncation=True,
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
if key != "bbox":
self.assertEqual(len(tokens[key].shape), 2)
else:
self.assertEqual(len(tokens[key].shape), 3)
# Batch of examples
# For these 2 examples, 3 training examples will be created
words_batched = [
["HuggingFace", "is", "solving", "NLP", "one", "commit", "at", "a", "time"],
["Very", "tiny", "input"],
]
boxes_batched = [[[i, i, i, i] for i in range(len(words_item))] for words_item in words_batched]
tokens = tokenizer.batch_encode_plus(
words_batched,
boxes=boxes_batched,
max_length=6,
padding=True,
truncation="only_first",
return_tensors=returned_tensor,
return_overflowing_tokens=True,
)
for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
if key != "bbox":
self.assertEqual(len(tokens[key].shape), 2)
self.assertEqual(tokens[key].shape[-1], 6)
else:
self.assertEqual(len(tokens[key].shape), 3)
self.assertEqual(tokens[key].shape[-1], 4)
@unittest.skip("TO DO: overwrite this very extensive test.")
def test_alignement_methods(self):
pass
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5):
toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
toks = list(
filter(
lambda t: [t[0]]
== tokenizer.encode(t[1].split(" "), boxes=len(t[1]) * [[1, 1, 1, 1]], add_special_tokens=False),
toks,
)
)
if max_length is not None and len(toks) > max_length:
toks = toks[:max_length]
if min_length is not None and len(toks) < min_length and len(toks) > 0:
while len(toks) < min_length:
toks = toks + toks
# toks_str = [t[1] for t in toks]
toks_ids = [t[0] for t in toks]
# Ensure consistency
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
if " " not in output_txt and len(toks_ids) > 1:
output_txt = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
)
if with_prefix_space:
output_txt = " " + output_txt
words = output_txt.split(" ")
boxes = [[i, i, i, i] for i in range(len(words))]
output_ids = tokenizer.encode(words, boxes=boxes, add_special_tokens=False)
return words, boxes, output_ids
def test_added_token_with_space_before(self):
tokenizer_s = self.get_tokenizer()
tokenizer_f = self.get_rust_tokenizer()
tokens_to_add = ["AAA", "bbb"]
words_with_space = [f" {token}" for token in tokens_to_add + tokenizer_s.unique_no_split_tokens]
words_without_space = tokens_to_add + tokenizer_s.unique_no_split_tokens
boxes = [[i, i, i, i] for i in range(len(words_with_space))]
tokens_to_add_formated = [
AddedToken(token, rstrip=True, lstrip=True, single_word=False) for token in tokens_to_add
]
tokenizer_s.add_tokens(tokens_to_add_formated)
tokenizer_f.add_tokens(tokens_to_add_formated)
ids_s = tokenizer_s(words_with_space, boxes=boxes).input_ids
ids_f = tokenizer_f(words_with_space, boxes=boxes).input_ids
tokens_s = tokenizer_s.convert_ids_to_tokens(ids_s)
tokens_f = tokenizer_f.convert_ids_to_tokens(ids_f)
ids_s = tokenizer_s(words_without_space, boxes=boxes).input_ids
ids_f = tokenizer_f(words_without_space, boxes=boxes).input_ids
tokens_s = tokenizer_s.convert_ids_to_tokens(ids_s)
tokens_f = tokenizer_f.convert_ids_to_tokens(ids_f)
self.assertEqual(tokens_s, tokens_f)
def test_maximum_encoding_length_pair_input(self):
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Build a sequence from our model's vocabulary
stride = 2
seq_0, boxes_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
question_0 = " ".join(map(str, seq_0))
if len(ids) <= 2 + stride:
seq_0 = (seq_0 + " ") * (2 + stride)
ids = None
seq0_tokens = tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)
seq0_input_ids = seq0_tokens["input_ids"]
self.assertGreater(len(seq0_input_ids), 2 + stride)
question_1 = "This is another sentence to be encoded."
seq_1 = ["what", "a", "weird", "test", "weirdly", "weird"]
boxes_1 = [[i, i, i, i] for i in range(1, len(seq_1) + 1)]
seq1_tokens = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)
if abs(len(seq0_input_ids) - len(seq1_tokens["input_ids"])) <= 2:
seq1_tokens_input_ids = seq1_tokens["input_ids"] + seq1_tokens["input_ids"]
seq_1 = tokenizer.decode(seq1_tokens_input_ids, clean_up_tokenization_spaces=False)
seq_1 = seq_1.split(" ")
boxes_1 = [[i, i, i, i] for i in range(1, len(seq_1) + 1)]
seq1_tokens = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)
seq1_input_ids = seq1_tokens["input_ids"]
self.assertGreater(len(seq1_input_ids), 2 + stride)
smallest = seq1_input_ids if len(seq0_input_ids) > len(seq1_input_ids) else seq0_input_ids
# We are not using the special tokens - a bit too hard to test all the tokenizers with this
# TODO try this again later
sequence = tokenizer(
question_0, seq_1, boxes=boxes_1, add_special_tokens=False
) # , add_prefix_space=False)
# Test with max model input length
model_max_length = tokenizer.model_max_length
self.assertEqual(model_max_length, 100)
seq_2 = seq_0 * model_max_length
question_2 = " ".join(map(str, seq_2))
boxes_2 = boxes_0 * model_max_length
self.assertGreater(len(seq_2), model_max_length)
sequence1 = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)
total_length1 = len(sequence1["input_ids"])
sequence2 = tokenizer(question_2, seq_1, boxes=boxes_1, add_special_tokens=False)
total_length2 = len(sequence2["input_ids"])
self.assertLess(total_length1, model_max_length, "Issue with the testing sequence, please update it.")
self.assertGreater(
total_length2, model_max_length, "Issue with the testing sequence, please update it."
)
# Simple
padding_strategies = (
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
)
for padding_state in padding_strategies:
with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
for truncation_state in [True, "longest_first", "only_first"]:
with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
output = tokenizer(
question_2,
seq_1,
boxes=boxes_1,
padding=padding_state,
truncation=truncation_state,
)
self.assertEqual(len(output["input_ids"]), model_max_length)
self.assertEqual(len(output["bbox"]), model_max_length)
output = tokenizer(
[question_2],
[seq_1],
boxes=[boxes_1],
padding=padding_state,
truncation=truncation_state,
)
self.assertEqual(len(output["input_ids"][0]), model_max_length)
self.assertEqual(len(output["bbox"][0]), model_max_length)
# Simple
output = tokenizer(
question_1, seq_2, boxes=boxes_2, padding=padding_state, truncation="only_second"
)
self.assertEqual(len(output["input_ids"]), model_max_length)
self.assertEqual(len(output["bbox"]), model_max_length)
output = tokenizer(
[question_1], [seq_2], boxes=[boxes_2], padding=padding_state, truncation="only_second"
)
self.assertEqual(len(output["input_ids"][0]), model_max_length)
self.assertEqual(len(output["bbox"][0]), model_max_length)
# Simple with no truncation
# Reset warnings
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer(
question_1, seq_2, boxes=boxes_2, padding=padding_state, truncation=False
)
self.assertNotEqual(len(output["input_ids"]), model_max_length)
self.assertNotEqual(len(output["bbox"]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer(
[question_1], [seq_2], boxes=[boxes_2], padding=padding_state, truncation=False
)
self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
self.assertNotEqual(len(output["bbox"][0]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
# Check the order of Sequence of input ids, overflowing tokens and bbox sequence with truncation
truncated_first_sequence = (
tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"][:-2]
+ tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"]
)
truncated_second_sequence = (
tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"]
+ tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"][:-2]
)
truncated_longest_sequence = (
truncated_first_sequence
if len(seq0_input_ids) > len(seq1_input_ids)
else truncated_second_sequence
)
overflow_first_sequence = (
tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"][-(2 + stride) :]
+ tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"]
)
overflow_second_sequence = (
tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)["input_ids"]
+ tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["input_ids"][-(2 + stride) :]
)
overflow_longest_sequence = (
overflow_first_sequence if len(seq0_input_ids) > len(seq1_input_ids) else overflow_second_sequence
)
bbox_first = [[0, 0, 0, 0]] * (len(seq0_input_ids) - 2)
bbox_first_sequence = bbox_first + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["bbox"]
overflowing_token_bbox_first_sequence_slow = [[0, 0, 0, 0]] * (2 + stride)
overflowing_token_bbox_first_sequence_fast = [[0, 0, 0, 0]] * (2 + stride) + tokenizer(
seq_1, boxes=boxes_1, add_special_tokens=False
)["bbox"]
bbox_second = [[0, 0, 0, 0]] * len(seq0_input_ids)
bbox_second_sequence = (
bbox_second + tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)["bbox"][:-2]
)
overflowing_token_bbox_second_sequence_slow = tokenizer(
seq_1, boxes=boxes_1, add_special_tokens=False
)["bbox"][-(2 + stride) :]
overflowing_token_bbox_second_sequence_fast = [[0, 0, 0, 0]] * len(seq0_input_ids) + tokenizer(
seq_1, boxes=boxes_1, add_special_tokens=False
)["bbox"][-(2 + stride) :]
bbox_longest_sequence = (
bbox_first_sequence if len(seq0_tokens) > len(seq1_tokens) else bbox_second_sequence
)
overflowing_token_bbox_longest_sequence_fast = (
overflowing_token_bbox_first_sequence_fast
if len(seq0_tokens) > len(seq1_tokens)
else overflowing_token_bbox_second_sequence_fast
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, LayoutLMv3TokenizerFast):
information = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation="longest_first",
return_overflowing_tokens=True,
# add_prefix_space=False,
)
truncated_sequence = information["input_ids"][0]
overflowing_tokens = information["input_ids"][1]
bbox = information["bbox"][0]
overflowing_bbox = information["bbox"][1]
self.assertEqual(len(information["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_longest_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
self.assertEqual(overflowing_tokens, overflow_longest_sequence)
self.assertEqual(bbox, bbox_longest_sequence)
self.assertEqual(len(overflowing_bbox), 2 + stride + len(smallest))
self.assertEqual(overflowing_bbox, overflowing_token_bbox_longest_sequence_fast)
else:
# No overflowing tokens when using 'longest' in python tokenizers
with self.assertRaises(ValueError) as context:
information = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation="longest_first",
return_overflowing_tokens=True,
# add_prefix_space=False,
)
self.assertTrue(
context.exception.args[0].startswith(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, LayoutLMv3TokenizerFast):
information = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation=True,
return_overflowing_tokens=True,
# add_prefix_space=False,
)
truncated_sequence = information["input_ids"][0]
overflowing_tokens = information["input_ids"][1]
bbox = information["bbox"][0]
overflowing_bbox = information["bbox"][1]
self.assertEqual(len(information["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_longest_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
self.assertEqual(overflowing_tokens, overflow_longest_sequence)
self.assertEqual(bbox, bbox_longest_sequence)
self.assertEqual(overflowing_bbox, overflowing_token_bbox_longest_sequence_fast)
else:
# No overflowing tokens when using 'longest' in python tokenizers
with self.assertRaises(ValueError) as context:
information = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation=True,
return_overflowing_tokens=True,
# add_prefix_space=False,
)
self.assertTrue(
context.exception.args[0].startswith(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
)
information_first_truncated = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation="only_first",
return_overflowing_tokens=True,
# add_prefix_space=False,
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, LayoutLMv3TokenizerFast):
truncated_sequence = information_first_truncated["input_ids"][0]
overflowing_tokens = information_first_truncated["input_ids"][1]
bbox = information_first_truncated["bbox"][0]
overflowing_bbox = information_first_truncated["bbox"][0]
self.assertEqual(len(information_first_truncated["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_first_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_input_ids))
self.assertEqual(overflowing_tokens, overflow_first_sequence)
self.assertEqual(bbox, bbox_first_sequence)
self.assertEqual(overflowing_bbox, overflowing_token_bbox_first_sequence_fast)
else:
truncated_sequence = information_first_truncated["input_ids"]
overflowing_tokens = information_first_truncated["overflowing_tokens"]
overflowing_bbox = information_first_truncated["overflowing_token_boxes"]
bbox = information_first_truncated["bbox"]
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_first_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, seq0_input_ids[-(2 + stride) :])
self.assertEqual(bbox, bbox_first_sequence)
self.assertEqual(overflowing_bbox, overflowing_token_bbox_first_sequence_slow)
information_second_truncated = tokenizer(
question_0,
seq_1,
boxes=boxes_1,
max_length=len(sequence["input_ids"]) - 2,
add_special_tokens=False,
stride=stride,
truncation="only_second",
return_overflowing_tokens=True,
# add_prefix_space=False,
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, LayoutLMv3TokenizerFast):
truncated_sequence = information_second_truncated["input_ids"][0]
overflowing_tokens = information_second_truncated["input_ids"][1]
bbox = information_second_truncated["bbox"][0]
overflowing_bbox = information_second_truncated["bbox"][1]
self.assertEqual(len(information_second_truncated["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_second_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_input_ids))
self.assertEqual(overflowing_tokens, overflow_second_sequence)
self.assertEqual(bbox, bbox_second_sequence)
self.assertEqual(overflowing_bbox, overflowing_token_bbox_second_sequence_fast)
else:
truncated_sequence = information_second_truncated["input_ids"]
overflowing_tokens = information_second_truncated["overflowing_tokens"]
bbox = information_second_truncated["bbox"]
overflowing_bbox = information_second_truncated["overflowing_token_boxes"]
self.assertEqual(len(truncated_sequence), len(sequence["input_ids"]) - 2)
self.assertEqual(truncated_sequence, truncated_second_sequence)
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, seq1_input_ids[-(2 + stride) :])
self.assertEqual(bbox, bbox_second_sequence)
self.assertEqual(overflowing_bbox, overflowing_token_bbox_second_sequence_slow)
def test_maximum_encoding_length_single_input(self):
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
seq_0, boxes_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
sequence = tokenizer(seq_0, boxes=boxes_0, add_special_tokens=False)
total_length = len(sequence["input_ids"])
self.assertGreater(
total_length, 4, "Issue with the testing sequence, please update it, it's too short"
)
# Test with max model input length
model_max_length = tokenizer.model_max_length
self.assertEqual(model_max_length, 100)
seq_1 = seq_0 * model_max_length
boxes_1 = boxes_0 * model_max_length
sequence1 = tokenizer(seq_1, boxes=boxes_1, add_special_tokens=False)
total_length1 = len(sequence1["input_ids"])
self.assertGreater(
total_length1,
model_max_length,
"Issue with the testing sequence, please update it, it's too short",
)
# Simple
padding_strategies = (
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
)
for padding_state in padding_strategies:
with self.subTest(f"Padding: {padding_state}"):
for truncation_state in [True, "longest_first", "only_first"]:
with self.subTest(f"Truncation: {truncation_state}"):
output = tokenizer(
seq_1,
boxes=boxes_1,
padding=padding_state,
truncation=truncation_state,
)
self.assertEqual(len(output["input_ids"]), model_max_length)
self.assertEqual(len(output["bbox"]), model_max_length)
output = tokenizer(
[seq_1],
boxes=[boxes_1],
padding=padding_state,
truncation=truncation_state,
)
self.assertEqual(len(output["input_ids"][0]), model_max_length)
self.assertEqual(len(output["bbox"][0]), model_max_length)
# Simple with no truncation
# Reset warnings
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer(seq_1, boxes=boxes_1, padding=padding_state, truncation=False)
self.assertNotEqual(len(output["input_ids"]), model_max_length)
self.assertNotEqual(len(output["bbox"]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer([seq_1], boxes=[boxes_1], padding=padding_state, truncation=False)
self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
self.assertNotEqual(len(output["bbox"][0]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
# Check the order of Sequence of input ids, overflowing tokens and bbox sequence with truncation
stride = 2
information = tokenizer(
seq_0,
boxes=boxes_0,
max_length=total_length - 2,
add_special_tokens=False,
stride=stride,
truncation=True,
return_overflowing_tokens=True,
# add_prefix_space=False,
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, LayoutLMv3TokenizerFast):
truncated_sequence = information["input_ids"][0]
overflowing_tokens = information["input_ids"][1]
# bbox = information["bbox"][0]
# overflowing_bbox = information["bbox"][1]
self.assertEqual(len(information["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), total_length - 2)
self.assertEqual(truncated_sequence, sequence["input_ids"][:-2])
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence["input_ids"][-(2 + stride) :])
# self.assertEqual(bbox, sequence["bbox"][:-2])
# self.assertEqual(overflowing_bbox, sequence["bbox"][-(2 + stride) :])
else:
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
# bbox = information["bbox"]
# overflowing_bbox = information["overflowing_token_boxes"]
self.assertEqual(len(truncated_sequence), total_length - 2)
self.assertEqual(truncated_sequence, sequence["input_ids"][:-2])
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence["input_ids"][-(2 + stride) :])
# self.assertEqual(bbox, sequence["bbox"][:-2])
# self.assertEqual(overflowing_bbox, sequence["bbox"][-(2 + stride) :])
@unittest.skip("LayoutLMv3 tokenizer requires boxes besides sequences.")
def test_pretokenized_inputs(self):
pass
@unittest.skip("LayoutLMv3 tokenizer always expects pretokenized inputs.")
def test_compare_pretokenized_inputs(self):
pass
@unittest.skip("LayoutLMv3 fast tokenizer does not support prepare_for_model")
def test_compare_prepare_for_model(self):
pass
@slow
def test_only_label_first_subword(self):
words = ["hello", "niels", "0000000000000000"]
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(words))]
word_labels = [0, 1, 2]
# test slow tokenizer
tokenizer_p = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False)
encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 1, -100, 2, -100, -100])
tokenizer_p = LayoutLMv3Tokenizer.from_pretrained(
"microsoft/layoutlmv3-base",
only_label_first_subword=False,
add_visual_labels=False,
)
encoding = tokenizer_p(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 1, 1, 2, 2, -100])
# test fast tokenizer
tokenizer_r = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base", add_visual_labels=False)
encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 1, -100, 2, -100, -100])
tokenizer_r = LayoutLMv3Tokenizer.from_pretrained(
"microsoft/layoutlmv3-base",
only_label_first_subword=False,
add_visual_labels=False,
)
encoding = tokenizer_r(words, boxes=boxes, word_labels=word_labels)
self.assertListEqual(encoding.labels, [-100, 0, 1, 1, 2, 2, -100])
@slow
def test_layoutlmv3_integration_test(self):
tokenizer_p = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base")
tokenizer_r = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
# There are 3 cases:
# CASE 1: document image classification (training + inference), document image token classification (inference),
# in which case only words and normalized bounding boxes are provided to the tokenizer
# CASE 2: document image token classification (training),
# in which case one also provides word labels to the tokenizer
# CASE 3: document image visual question answering (inference),
# in which case one also provides a question to the tokenizer
# We need to test all 3 cases both on batched and non-batched inputs.
# CASE 1: not batched
words, boxes = self.get_words_and_boxes()
# fmt: off
expected_results = {'input_ids': [0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'attention_mask': [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 1: batched
words, boxes = self.get_words_and_boxes_batch()
# fmt: off
expected_results = {'input_ids': [[0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 92, 614, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'attention_mask': [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# CASE 2: not batched
words, boxes = self.get_words_and_boxes()
word_labels = [1, 2]
# fmt: off
expected_results = {'input_ids': [0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'labels': [-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], 'attention_mask': [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# # CASE 2: batched
words, boxes = self.get_words_and_boxes_batch()
word_labels = [[1, 2], [2, 46]]
# fmt: off
expected_results = {'input_ids': [[0, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 92, 614, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [961, 885, 992, 912], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'labels': [[-100, 1, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100], [-100, 2, 46, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100]], 'attention_mask': [[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
encoding_r = tokenizer_r(words, boxes=boxes, word_labels=word_labels, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# # CASE 3: not batched
question, words, boxes = self.get_question_words_and_boxes()
# fmt: off
expected_results = {'input_ids': [0, 99, 18, 39, 766, 116, 2, 2, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'bbox': [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(question, words, boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(question, words, boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
# # CASE 3: batched
questions, words, boxes = self.get_question_words_and_boxes_batch()
# fmt: off
expected_results = {'input_ids': [[0, 99, 18, 39, 766, 116, 2, 2, 795, 13964, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 141, 16, 37, 373, 116, 2, 2, 13964, 795, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'bbox': [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [423, 237, 440, 251], [427, 272, 441, 287], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [256, 38, 330, 58], [256, 38, 330, 58], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E231
# fmt: on
encoding_p = tokenizer_p(questions, words, boxes, padding="max_length", max_length=20)
encoding_r = tokenizer_r(questions, words, boxes, padding="max_length", max_length=20)
self.assertDictEqual(dict(encoding_p), expected_results)
self.assertDictEqual(dict(encoding_r), expected_results)
@unittest.skip("Doesn't support another framework than PyTorch")
def test_np_encode_plus_sent_to_model(self):
pass
@require_tf
@slow
def test_tf_encode_plus_sent_to_model(self):
from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING
MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)
tokenizers = self.get_tokenizers(do_lower_case=False)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
return
config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
config = config_class()
if config.is_encoder_decoder or config.pad_token_id is None:
return
model = model_class(config)
# Make sure the model contains at least the full vocabulary size in its embedding matrix
self.assertGreaterEqual(model.config.vocab_size, len(tokenizer))
# Build sequence
first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
boxes = [[1000, 1000, 1000, 1000] for _ in range(len(first_ten_tokens))]
encoded_sequence = tokenizer.encode_plus(first_ten_tokens, boxes=boxes, return_tensors="tf")
batch_encoded_sequence = tokenizer.batch_encode_plus(
[first_ten_tokens, first_ten_tokens], boxes=[boxes, boxes], return_tensors="tf"
)
# This should not fail
model(encoded_sequence)
model(batch_encoded_sequence)
|