File size: 24,825 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest
from typing import List

import numpy as np

from transformers import PreTrainedTokenizer, PreTrainedTokenizerBase, PreTrainedTokenizerFast
from transformers.models.layoutlmv2 import LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast
from transformers.models.layoutlmv2.tokenization_layoutlmv2 import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pytesseract, require_tokenizers, require_torch, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, cached_property, is_pytesseract_available


if is_pytesseract_available():
    from PIL import Image

    from transformers import LayoutLMv2ImageProcessor, LayoutLMv2Processor


@require_pytesseract
@require_tokenizers
class LayoutLMv2ProcessorTest(unittest.TestCase):
    tokenizer_class = LayoutLMv2Tokenizer
    rust_tokenizer_class = LayoutLMv2TokenizerFast

    def setUp(self):
        vocab_tokens = [
            "[UNK]",
            "[CLS]",
            "[SEP]",
            "[PAD]",
            "[MASK]",
            "want",
            "##want",
            "##ed",
            "wa",
            "un",
            "runn",
            "##ing",
            ",",
            "low",
            "lowest",
        ]

        image_processor_map = {
            "do_resize": True,
            "size": 224,
            "apply_ocr": True,
        }

        self.tmpdirname = tempfile.mkdtemp()
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
        self.image_processing_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
        with open(self.image_processing_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(image_processor_map) + "\n")

    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def get_tokenizers(self, **kwargs) -> List[PreTrainedTokenizerBase]:
        return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]

    def get_image_processor(self, **kwargs):
        return LayoutLMv2ImageProcessor.from_pretrained(self.tmpdirname, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_default(self):
        image_processor = self.get_image_processor()
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            processor.save_pretrained(self.tmpdirname)
            processor = LayoutLMv2Processor.from_pretrained(self.tmpdirname)

            self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
            self.assertIsInstance(processor.tokenizer, (LayoutLMv2Tokenizer, LayoutLMv2TokenizerFast))

            self.assertEqual(processor.image_processor.to_json_string(), image_processor.to_json_string())
            self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)

    def test_save_load_pretrained_additional_features(self):
        processor = LayoutLMv2Processor(image_processor=self.get_image_processor(), tokenizer=self.get_tokenizer())
        processor.save_pretrained(self.tmpdirname)

        # slow tokenizer
        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30)

        processor = LayoutLMv2Processor.from_pretrained(
            self.tmpdirname, use_fast=False, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, LayoutLMv2Tokenizer)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)

        # fast tokenizer
        tokenizer_add_kwargs = self.get_rust_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        image_processor_add_kwargs = self.get_image_processor(do_resize=False, size=30)

        processor = LayoutLMv2Processor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_resize=False, size=30
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, LayoutLMv2TokenizerFast)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, LayoutLMv2ImageProcessor)

    def test_model_input_names(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = LayoutLMv2Processor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        # add extra args
        inputs = processor(text=input_str, images=image_input, return_codebook_pixels=False, return_image_mask=False)

        self.assertListEqual(list(inputs.keys()), processor.model_input_names)

    @slow
    def test_overflowing_tokens(self):
        # In the case of overflowing tokens, test that we still have 1-to-1 mapping between the images and input_ids (sequences that are too long are broken down into multiple sequences).

        from datasets import load_dataset

        # set up
        datasets = load_dataset("nielsr/funsd")
        processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")

        def preprocess_data(examples):
            images = [Image.open(path).convert("RGB") for path in examples["image_path"]]
            words = examples["words"]
            boxes = examples["bboxes"]
            word_labels = examples["ner_tags"]
            encoded_inputs = processor(
                images,
                words,
                boxes=boxes,
                word_labels=word_labels,
                padding="max_length",
                truncation=True,
                return_overflowing_tokens=True,
                stride=50,
                return_offsets_mapping=True,
                return_tensors="pt",
            )
            return encoded_inputs

        train_data = preprocess_data(datasets["train"])

        self.assertEqual(len(train_data["image"]), len(train_data["input_ids"]))


# different use cases tests
@require_torch
@require_pytesseract
class LayoutLMv2ProcessorIntegrationTests(unittest.TestCase):
    @cached_property
    def get_images(self):
        # we verify our implementation on 2 document images from the DocVQA dataset
        from datasets import load_dataset

        ds = load_dataset("hf-internal-testing/fixtures_docvqa", split="test")

        image_1 = Image.open(ds[0]["file"]).convert("RGB")
        image_2 = Image.open(ds[1]["file"]).convert("RGB")

        return image_1, image_2

    @cached_property
    def get_tokenizers(self):
        slow_tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased")
        fast_tokenizer = LayoutLMv2TokenizerFast.from_pretrained("microsoft/layoutlmv2-base-uncased")
        return [slow_tokenizer, fast_tokenizer]

    @slow
    def test_processor_case_1(self):
        # case 1: document image classification (training, inference) + token classification (inference), apply_ocr = True

        image_processor = LayoutLMv2ImageProcessor()
        tokenizers = self.get_tokenizers
        images = self.get_images

        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            # not batched
            input_image_proc = image_processor(images[0], return_tensors="pt")
            input_processor = processor(images[0], return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify image
            self.assertAlmostEqual(input_image_proc["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2)

            # verify input_ids
            # this was obtained with Tesseract 4.1.1
            # fmt: off
            expected_decoding = "[CLS] 11 : 14 to 11 : 39 a. m 11 : 39 to 11 : 44 a. m. 11 : 44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president β€œ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from the floor. dr. emil m. mrak, university of cal - ifornia, chairman, trrf board ; sam r. cecil, university of georgia college of agriculture ; dr. stanley charm, tufts university school of medicine ; dr. robert h. cotton, itt continental baking company ; dr. owen fennema, university of wis - consin ; dr. robert e. hardenburg, usda. questions and answers exhibits open capt. jack stoney room trrf scientific advisory council meeting ballroom foyer [SEP]"  # noqa: E231
            # fmt: on
            decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            input_image_proc = image_processor(images, return_tensors="pt")
            input_processor = processor(images, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify images
            self.assertAlmostEqual(input_image_proc["pixel_values"].sum(), input_processor["image"].sum(), delta=1e-2)

            # verify input_ids
            # this was obtained with Tesseract 4.1.1
            # fmt: off
            expected_decoding = "[CLS] 7 itc limited report and accounts 2013 itc ’ s brands : an asset for the nation the consumer needs and aspirations they fulfil, the benefit they generate for millions across itc ’ s value chains, the future - ready capabilities that support them, and the value that they create for the country, have made itc ’ s brands national assets, adding to india ’ s competitiveness. it is itc ’ s aspiration to be the no 1 fmcg player in the country, driven by its new fmcg businesses. a recent nielsen report has highlighted that itc's new fmcg businesses are the fastest growing among the top consumer goods companies operating in india. itc takes justifiable pride that, along with generating economic value, these celebrated indian brands also drive the creation of larger societal capital through the virtuous cycle of sustainable and inclusive growth. di wills * ; love delightfully soft skin? aia ans source : https : / / www. industrydocuments. ucsf. edu / docs / snbx0223 [SEP] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD] [PAD]"  # noqa: E231
            # fmt: on
            decoding = processor.decode(input_processor.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

    @slow
    def test_processor_case_2(self):
        # case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False

        image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
        tokenizers = self.get_tokenizers
        images = self.get_images

        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            # not batched
            words = ["hello", "world"]
            boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
            input_processor = processor(images[0], words, boxes=boxes, return_tensors="pt")

            # verify keys
            expected_keys = ["input_ids", "bbox", "token_type_ids", "attention_mask", "image"]
            actual_keys = list(input_processor.keys())
            for key in expected_keys:
                self.assertIn(key, actual_keys)

            # verify input_ids
            expected_decoding = "[CLS] hello world [SEP]"
            decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            words = [["hello", "world"], ["my", "name", "is", "niels"]]
            boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
            input_processor = processor(images, words, boxes=boxes, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "[CLS] hello world [SEP] [PAD] [PAD] [PAD]"
            decoding = processor.decode(input_processor.input_ids[0].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify bbox
            expected_bbox = [
                [0, 0, 0, 0],
                [3, 2, 5, 1],
                [6, 7, 4, 2],
                [3, 9, 2, 4],
                [1, 1, 2, 3],
                [1, 1, 2, 3],
                [1000, 1000, 1000, 1000],
            ]
            self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)

    @slow
    def test_processor_case_3(self):
        # case 3: token classification (training), apply_ocr=False

        image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
        tokenizers = self.get_tokenizers
        images = self.get_images

        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            # not batched
            words = ["weirdly", "world"]
            boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
            word_labels = [1, 2]
            input_processor = processor(images[0], words, boxes=boxes, word_labels=word_labels, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "[CLS] weirdly world [SEP]"
            decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify labels
            expected_labels = [-100, 1, -100, 2, -100]
            self.assertListEqual(input_processor.labels.squeeze().tolist(), expected_labels)

            # batched
            words = [["hello", "world"], ["my", "name", "is", "niels"]]
            boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
            word_labels = [[1, 2], [6, 3, 10, 2]]
            input_processor = processor(
                images, words, boxes=boxes, word_labels=word_labels, padding=True, return_tensors="pt"
            )

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "labels", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "[CLS] my name is niels [SEP]"
            decoding = processor.decode(input_processor.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify bbox
            expected_bbox = [
                [0, 0, 0, 0],
                [3, 2, 5, 1],
                [6, 7, 4, 2],
                [3, 9, 2, 4],
                [1, 1, 2, 3],
                [1, 1, 2, 3],
                [1000, 1000, 1000, 1000],
            ]
            self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)

            # verify labels
            expected_labels = [-100, 6, 3, 10, 2, -100, -100]
            self.assertListEqual(input_processor.labels[1].tolist(), expected_labels)

    @slow
    def test_processor_case_4(self):
        # case 4: visual question answering (inference), apply_ocr=True

        image_processor = LayoutLMv2ImageProcessor()
        tokenizers = self.get_tokenizers
        images = self.get_images

        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            # not batched
            question = "What's his name?"
            input_processor = processor(images[0], question, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            # this was obtained with Tesseract 4.1.1
            # fmt: off
            expected_decoding = "[CLS] what's his name? [SEP] 11 : 14 to 11 : 39 a. m 11 : 39 to 11 : 44 a. m. 11 : 44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president β€œ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from the floor. dr. emil m. mrak, university of cal - ifornia, chairman, trrf board ; sam r. cecil, university of georgia college of agriculture ; dr. stanley charm, tufts university school of medicine ; dr. robert h. cotton, itt continental baking company ; dr. owen fennema, university of wis - consin ; dr. robert e. hardenburg, usda. questions and answers exhibits open capt. jack stoney room trrf scientific advisory council meeting ballroom foyer [SEP]"  # noqa: E231
            # fmt: on
            decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            questions = ["How old is he?", "what's the time"]
            input_processor = processor(
                images, questions, padding="max_length", max_length=20, truncation=True, return_tensors="pt"
            )

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            # this was obtained with Tesseract 4.1.1
            expected_decoding = "[CLS] what's the time [SEP] 7 itc limited report and accounts 2013 itc ’ s [SEP]"
            decoding = processor.decode(input_processor.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify bbox
            # fmt: off
            expected_bbox = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1000, 1000, 1000, 1000], [0, 45, 67, 80], [72, 56, 109, 67], [72, 56, 109, 67], [116, 56, 189, 67], [198, 59, 253, 66], [257, 59, 285, 66], [289, 59, 365, 66], [372, 59, 407, 66], [74, 136, 161, 158], [74, 136, 161, 158], [74, 136, 161, 158], [74, 136, 161, 158], [1000, 1000, 1000, 1000]]  # noqa: E231
            # fmt: on
            self.assertListEqual(input_processor.bbox[1].tolist(), expected_bbox)

    @slow
    def test_processor_case_5(self):
        # case 5: visual question answering (inference), apply_ocr=False

        image_processor = LayoutLMv2ImageProcessor(apply_ocr=False)
        tokenizers = self.get_tokenizers
        images = self.get_images

        for tokenizer in tokenizers:
            processor = LayoutLMv2Processor(image_processor=image_processor, tokenizer=tokenizer)

            # not batched
            question = "What's his name?"
            words = ["hello", "world"]
            boxes = [[1, 2, 3, 4], [5, 6, 7, 8]]
            input_processor = processor(images[0], question, words, boxes, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "[CLS] what's his name? [SEP] hello world [SEP]"
            decoding = processor.decode(input_processor.input_ids.squeeze().tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # batched
            questions = ["How old is he?", "what's the time"]
            words = [["hello", "world"], ["my", "name", "is", "niels"]]
            boxes = [[[1, 2, 3, 4], [5, 6, 7, 8]], [[3, 2, 5, 1], [6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3]]]
            input_processor = processor(images, questions, words, boxes, padding=True, return_tensors="pt")

            # verify keys
            expected_keys = ["attention_mask", "bbox", "image", "input_ids", "token_type_ids"]
            actual_keys = sorted(input_processor.keys())
            self.assertListEqual(actual_keys, expected_keys)

            # verify input_ids
            expected_decoding = "[CLS] how old is he? [SEP] hello world [SEP] [PAD] [PAD] [PAD]"
            decoding = processor.decode(input_processor.input_ids[0].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            expected_decoding = "[CLS] what's the time [SEP] my name is niels [SEP]"
            decoding = processor.decode(input_processor.input_ids[1].tolist())
            self.assertSequenceEqual(decoding, expected_decoding)

            # verify bbox
            expected_bbox = [[6, 7, 4, 2], [3, 9, 2, 4], [1, 1, 2, 3], [1, 1, 2, 3], [1000, 1000, 1000, 1000]]
            self.assertListEqual(input_processor.bbox[1].tolist()[-5:], expected_bbox)