File size: 16,080 Bytes
96e9536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

-->

# Optimize inference using torch.compile()

This guide aims to provide a benchmark on the inference speed-ups introduced with [`torch.compile()`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) for [computer vision models in 🤗 Transformers](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers&sort=trending).

## Benefits of torch.compile
   
Depending on the model and the GPU, `torch.compile()` yields up to 30% speed-up during inference. To use `torch.compile()`, simply install any version of `torch` above 2.0. 

Compiling a model takes time, so it's useful if you are compiling the model only once instead of every time you infer.
To compile any computer vision model of your choice, call `torch.compile()` on the model as shown below:

```diff
from transformers import AutoModelForImageClassification

model = AutoModelForImageClassification.from_pretrained(MODEL_ID).to("cuda")
+ model = torch.compile(model)
```

`compile()` comes with multiple modes for compiling, which essentially differ in compilation time and inference overhead. `max-autotune` takes longer than `reduce-overhead` but results in faster inference. Default mode is fastest for compilation but is not as efficient compared to `reduce-overhead` for inference time. In this guide, we used the default mode. You can learn more about it [here](https://pytorch.org/get-started/pytorch-2.0/#user-experience).

We benchmarked `torch.compile` with different computer vision models, tasks, types of hardware, and batch sizes on `torch` version 2.0.1.

## Benchmarking code 

Below you can find the benchmarking code for each task. We warm up the GPU before inference and take the mean time of 300 inferences, using the same image each time.

### Image Classification with ViT

```python 
import torch
from PIL import Image
import requests
import numpy as np
from transformers import AutoImageProcessor, AutoModelForImageClassification

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224").to("cuda")
model = torch.compile(model)

processed_input = processor(image, return_tensors='pt').to(device="cuda")

with torch.no_grad():
    _ = model(**processed_input)

```

#### Object Detection with DETR

```python 
from transformers import AutoImageProcessor, AutoModelForObjectDetection

processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to("cuda")
model = torch.compile(model)

texts = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=texts, images=image, return_tensors="pt").to("cuda")

with torch.no_grad():
    _ = model(**inputs)
```

#### Image Segmentation with Segformer

```python 
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation

processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to("cuda")
model = torch.compile(model)
seg_inputs = processor(images=image, return_tensors="pt").to("cuda")

with torch.no_grad():
    _ = model(**seg_inputs)
```

Below you can find the list of the models we benchmarked.

**Image Classification** 
- [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
- [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k)
- [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224)
- [microsoft/resnet-50](https://huggingface.co/)

**Image Segmentation** 
- [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [facebook/mask2former-swin-tiny-coco-panoptic](https://huggingface.co/facebook/mask2former-swin-tiny-coco-panoptic)
- [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade)
- [google/deeplabv3_mobilenet_v2_1.0_513](https://huggingface.co/google/deeplabv3_mobilenet_v2_1.0_513)

**Object Detection** 
- [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50)

Below you can find visualization of inference durations with and without `torch.compile()` and percentage improvements for each model in different hardware and batch sizes. 

<div class="flex">
  <div>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/a100_batch_comp.png" />
  </div>
  <div>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/v100_batch_comp.png" />
  </div>
   <div>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/t4_batch_comp.png" />
  </div>
</div>

<div class="flex">
  <div>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/A100_1_duration.png" />
  </div>
  <div>
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/A100_1_percentage.png" />
  </div>
</div>


![Duration Comparison on V100 with Batch Size of 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/v100_1_duration.png)

![Percentage Improvement on T4 with Batch Size of 4](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/T4_4_percentage.png)

Below you can find inference durations in milliseconds for each model with and without `compile()`. Note that OwlViT results in OOM in larger batch sizes.

### A100 (batch size: 1)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 9.325 | 7.584 | 
| Image Segmentation/Segformer | 11.759 | 10.500 |
| Object Detection/OwlViT | 24.978 | 18.420 |
| Image Classification/BeiT | 11.282 | 8.448 | 
| Object Detection/DETR | 34.619 | 19.040 |
| Image Classification/ConvNeXT | 10.410 | 10.208 | 
| Image Classification/ResNet | 6.531 | 4.124 |
| Image Segmentation/Mask2former | 60.188 | 49.117 |
| Image Segmentation/Maskformer | 75.764 | 59.487 | 
| Image Segmentation/MobileNet | 8.583 | 3.974 |
| Object Detection/Resnet-101 | 36.276 | 18.197 |
| Object Detection/Conditional-DETR | 31.219 | 17.993 |


### A100 (batch size: 4)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 14.832 | 14.499 | 
| Image Segmentation/Segformer | 18.838 | 16.476 |
| Image Classification/BeiT | 13.205 | 13.048 | 
| Object Detection/DETR | 48.657 | 32.418|
| Image Classification/ConvNeXT | 22.940 | 21.631 | 
| Image Classification/ResNet | 6.657 | 4.268 |
| Image Segmentation/Mask2former | 74.277 | 61.781 |
| Image Segmentation/Maskformer | 180.700 | 159.116 | 
| Image Segmentation/MobileNet | 14.174 | 8.515 |
| Object Detection/Resnet-101 | 68.101 | 44.998 |
| Object Detection/Conditional-DETR | 56.470 | 35.552 |

### A100 (batch size: 16)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 40.944 | 40.010 | 
| Image Segmentation/Segformer | 37.005 | 31.144 |
| Image Classification/BeiT | 41.854 | 41.048 | 
| Object Detection/DETR | 164.382 | 161.902 |
| Image Classification/ConvNeXT | 82.258 | 75.561 | 
| Image Classification/ResNet | 7.018 | 5.024 |
| Image Segmentation/Mask2former | 178.945 | 154.814 |
| Image Segmentation/Maskformer | 638.570 | 579.826 | 
| Image Segmentation/MobileNet | 51.693 | 30.310 |
| Object Detection/Resnet-101 | 232.887 | 155.021 |
| Object Detection/Conditional-DETR | 180.491 | 124.032 |

### V100 (batch size: 1)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 10.495 | 6.00 | 
| Image Segmentation/Segformer | 13.321 | 5.862 | 
| Object Detection/OwlViT | 25.769 | 22.395 | 
| Image Classification/BeiT | 11.347 | 7.234 | 
| Object Detection/DETR | 33.951 | 19.388 |
| Image Classification/ConvNeXT | 11.623 | 10.412 | 
| Image Classification/ResNet | 6.484 | 3.820 |
| Image Segmentation/Mask2former | 64.640 | 49.873 |
| Image Segmentation/Maskformer | 95.532 | 72.207 | 
| Image Segmentation/MobileNet | 9.217 | 4.753 |
| Object Detection/Resnet-101 | 52.818 | 28.367 |
| Object Detection/Conditional-DETR | 39.512 | 20.816 |

### V100 (batch size: 4)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 15.181 | 14.501 | 
| Image Segmentation/Segformer | 16.787 | 16.188 |
| Image Classification/BeiT | 15.171 | 14.753 | 
| Object Detection/DETR | 88.529 | 64.195 |
| Image Classification/ConvNeXT | 29.574 | 27.085 | 
| Image Classification/ResNet | 6.109 | 4.731 |
| Image Segmentation/Mask2former | 90.402 | 76.926 |
| Image Segmentation/Maskformer | 234.261 | 205.456 | 
| Image Segmentation/MobileNet | 24.623 | 14.816 |
| Object Detection/Resnet-101 | 134.672 | 101.304 |
| Object Detection/Conditional-DETR | 97.464 | 69.739 |

### V100 (batch size: 16)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 52.209 | 51.633 | 
| Image Segmentation/Segformer | 61.013 | 55.499 |
| Image Classification/BeiT | 53.938 | 53.581  |
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 109.682 | 100.771 | 
| Image Classification/ResNet | 14.857 | 12.089 |
| Image Segmentation/Mask2former | 249.605 | 222.801 |
| Image Segmentation/Maskformer | 831.142 | 743.645 | 
| Image Segmentation/MobileNet | 93.129 | 55.365 |
| Object Detection/Resnet-101 | 482.425 | 361.843 |
| Object Detection/Conditional-DETR | 344.661 | 255.298 |

### T4 (batch size: 1)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 16.520 | 15.786 | 
| Image Segmentation/Segformer | 16.116 | 14.205 |
| Object Detection/OwlViT | 53.634 | 51.105 |
| Image Classification/BeiT | 16.464 | 15.710 | 
| Object Detection/DETR | 73.100 | 53.99 |
| Image Classification/ConvNeXT | 32.932 | 30.845 | 
| Image Classification/ResNet | 6.031 | 4.321 |
| Image Segmentation/Mask2former | 79.192 | 66.815 |
| Image Segmentation/Maskformer | 200.026 | 188.268 | 
| Image Segmentation/MobileNet | 18.908 | 11.997 |
| Object Detection/Resnet-101 | 106.622 | 82.566 |
| Object Detection/Conditional-DETR | 77.594 | 56.984 |

### T4 (batch size: 4)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 43.653 | 43.626 | 
| Image Segmentation/Segformer | 45.327 | 42.445 |
| Image Classification/BeiT | 52.007 | 51.354 | 
| Object Detection/DETR | 277.850 | 268.003 |
| Image Classification/ConvNeXT | 119.259 | 105.580 | 
| Image Classification/ResNet | 13.039 | 11.388 |
| Image Segmentation/Mask2former | 201.540 | 184.670 |
| Image Segmentation/Maskformer | 764.052 | 711.280 | 
| Image Segmentation/MobileNet | 74.289 | 48.677 |
| Object Detection/Resnet-101 | 421.859 | 357.614 |
| Object Detection/Conditional-DETR | 289.002 | 226.945 |

### T4 (batch size: 16)

| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 163.914 | 160.907 | 
| Image Segmentation/Segformer | 192.412 | 163.620 |
| Image Classification/BeiT | 188.978 | 187.976 | 
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 422.886 | 388.078 | 
| Image Classification/ResNet | 44.114 | 37.604 |
| Image Segmentation/Mask2former | 756.337 | 695.291 |
| Image Segmentation/Maskformer | 2842.940 | 2656.88 | 
| Image Segmentation/MobileNet | 299.003 | 201.942 |
| Object Detection/Resnet-101 |  1619.505 | 1262.758 | 
| Object Detection/Conditional-DETR | 1137.513 | 897.390|

## PyTorch Nightly
We also benchmarked on PyTorch nightly (2.1.0dev, find the wheel [here](https://download.pytorch.org/whl/nightly/cu118)) and observed improvement in latency both for uncompiled and compiled models. 

### A100

| **Task/Model** | **Batch Size** | **torch 2.0 - no compile** | **torch 2.0 -<br> compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 12.462 | 6.954 | 
| Image Classification/BeiT | 4 | 14.109 | 12.851 | 
| Image Classification/BeiT | 16 | 42.179 | 42.147 | 
| Object Detection/DETR | Unbatched | 30.484 | 15.221 |
| Object Detection/DETR | 4 | 46.816 | 30.942 |
| Object Detection/DETR | 16 | 163.749 | 163.706  |

### T4

| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 14.408 | 14.052 | 
| Image Classification/BeiT | 4 | 47.381 | 46.604 | 
| Image Classification/BeiT | 16 | 42.179 | 42.147  | 
| Object Detection/DETR | Unbatched | 68.382 | 53.481 |
| Object Detection/DETR | 4 | 269.615 | 204.785 |
| Object Detection/DETR | 16 | OOM | OOM   |

### V100

| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 13.477 | 7.926 | 
| Image Classification/BeiT | 4 | 15.103 | 14.378 | 
| Image Classification/BeiT | 16 | 52.517 | 51.691  | 
| Object Detection/DETR | Unbatched | 28.706 | 19.077 |
| Object Detection/DETR | 4 | 88.402 | 62.949|
| Object Detection/DETR | 16 | OOM | OOM  |


## Reduce Overhead
We benchmarked `reduce-overhead` compilation mode for A100 and T4 in Nightly.

### A100

| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 11.758 | 7.335 | 
| Image Classification/ConvNeXT | 4 | 23.171 | 21.490 | 
| Image Classification/ResNet | Unbatched | 7.435 | 3.801 | 
| Image Classification/ResNet | 4 | 7.261 | 2.187 | 
| Object Detection/Conditional-DETR | Unbatched | 32.823 | 11.627  | 
| Object Detection/Conditional-DETR | 4 | 50.622 | 33.831  | 
| Image Segmentation/MobileNet | Unbatched | 9.869 | 4.244 |
| Image Segmentation/MobileNet | 4 | 14.385 | 7.946 |


### T4

| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** | 
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 32.137 | 31.84 | 
| Image Classification/ConvNeXT | 4 | 120.944 | 110.209 | 
| Image Classification/ResNet | Unbatched | 9.761 | 7.698 | 
| Image Classification/ResNet | 4 | 15.215 | 13.871 | 
| Object Detection/Conditional-DETR | Unbatched | 72.150 | 57.660  | 
| Object Detection/Conditional-DETR | 4 | 301.494 | 247.543  | 
| Image Segmentation/MobileNet | Unbatched | 22.266 | 19.339  |
| Image Segmentation/MobileNet | 4 | 78.311 | 50.983 |