diff --git "a/app.py" "b/app.py" new file mode 100644--- /dev/null +++ "b/app.py" @@ -0,0 +1,1986 @@ +import functools +import inspect +import sys +import os +import traceback +import typing +from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up + +SEED = 1236 +set_seed(SEED) + +os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' +from typing import Union +import numpy as np +import pandas as pd + +import fire +import torch +from peft import PeftModel +from transformers import GenerationConfig, StoppingCriteriaList, AutoModel +from accelerate import init_empty_weights, infer_auto_device_map + +from prompter import Prompter + +from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \ + human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower +from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub + +is_hf = bool(os.getenv("HUGGINGFACE_SPACES")) +is_gpth2oai = bool(os.getenv("GPT_H2O_AI")) +is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer +is_low_mem = is_hf # assumes run on 24GB consumer GPU +admin_pass = os.getenv("ADMIN_PASS") +# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result +raise_generate_gpu_exceptions = True + +eval_extra_columns = ['prompt', 'response', 'score'] + +def main( + load_8bit: bool = False, + load_half: bool = True, + infer_devices: bool = True, + base_model: str = '', + tokenizer_base_model: str = '', + lora_weights: str = "", + gpu_id: int = 0, # if infer_devices = True and gpu_id != -1 + + prompt_type: Union[int, str] = None, + # input to generation + temperature: float = None, + top_p: float = None, + top_k: int = None, + num_beams: int = None, + repetition_penalty: float = None, + num_return_sequences: int = None, + do_sample: bool = None, + max_new_tokens: int = None, + min_new_tokens: int = None, + early_stopping: Union[bool, str] = None, + max_time: float = None, + + llama_type: bool = None, + debug: bool = False, + save_dir: str = None, + share: bool = True, + local_files_only: bool = False, + resume_download: bool = True, + use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running + + src_lang: str = "English", + tgt_lang: str = "Russian", + + gradio: bool = True, + gradio_avoid_processing_markdown: bool = False, + chat: bool = True, + chat_history: int = 4096, # character length of chat context/history + stream_output: bool = True, + show_examples: bool = None, + verbose: bool = False, + h2ocolors: bool = True, + height: int = 400, + show_lora: bool = True, + # set to True to load --base_model after client logs in, + # to be able to free GPU memory when model is swapped + login_mode_if_model0: bool = False, + block_gradio_exit: bool = True, + + sanitize_user_prompt: bool = True, + sanitize_bot_response: bool = True, + + extra_model_options: typing.List[str] = [], + extra_lora_options: typing.List[str] = [], + + score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2', + auto_score: bool = True, + + eval_sharegpt_prompts_only: int = 0, + eval_sharegpt_prompts_only_seed: int = 1234, + eval_sharegpt_as_output: bool = False, +): + # allow set token directly + use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token) + + if is_public: + temperature = 0.4 + top_p = 0.85 + top_k = 70 + do_sample = True + if is_low_mem: + base_model = 'h2oai/h2ogpt-oasst1-512-12b' + load_8bit = True + else: + base_model = 'h2oai/h2ogpt-oasst1-512-20b' + if is_low_mem: + load_8bit = True + if is_hf: + # must override share if in spaces + share = False + save_dir = os.getenv('SAVE_DIR', save_dir) + score_model = os.getenv('SCORE_MODEL', score_model) + if score_model == 'None': + score_model = '' + + # get defaults + model_lower = base_model.lower() + if not gradio: + # force, else not single response like want to look at + stream_output = False + # else prompt removal can mess up output + chat = False + + placeholder_instruction, placeholder_input, \ + stream_output, show_examples, \ + prompt_type, temperature, top_p, top_k, num_beams, \ + max_new_tokens, min_new_tokens, early_stopping, max_time, \ + repetition_penalty, num_return_sequences, \ + do_sample, \ + src_lang, tgt_lang, \ + examples, \ + task_info = \ + get_generate_params(model_lower, chat, + stream_output, show_examples, + prompt_type, temperature, top_p, top_k, num_beams, + max_new_tokens, min_new_tokens, early_stopping, max_time, + repetition_penalty, num_return_sequences, + do_sample, + ) + + if not gradio: + if eval_sharegpt_prompts_only > 0: + # override default examples with shareGPT ones for human-level eval purposes only + eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' + if not os.path.isfile(eval_filename): + os.system( + 'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename) + import json + data = json.load(open(eval_filename, 'rt')) + # focus on data that starts with human, else likely chopped from other data + turn_start = 0 # odd in general + data = [x for x in data if len(x['conversations']) > turn_start + 1 and + x['conversations'][turn_start]['from'] == 'human' and + x['conversations'][turn_start + 1]['from'] == 'gpt'] + np.random.seed(eval_sharegpt_prompts_only_seed) + example1 = examples[-1] # pick reference example + examples = [] + responses = [] + for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)): + assert data[i]['conversations'][turn_start]['from'] == 'human' + instruction = data[i]['conversations'][turn_start]['value'] + assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' + output = data[i]['conversations'][turn_start + 1]['value'] + examplenew = example1.copy() + assert not chat, "No gradio must use chat=False, uses nochat isntruct" + examplenew[eval_func_param_names.index('instruction_nochat')] = instruction + examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input + examplenew[eval_func_param_names.index('context')] = '' # no context + examples.append(examplenew) + responses.append(output) + + num_examples = len(examples) + scoring_path = 'scoring' + os.makedirs(scoring_path, exist_ok=True) + if eval_sharegpt_as_output: + used_base_model = 'gpt35' + used_lora_weights = '' + else: + used_base_model = str(base_model.split('/')[-1]) + used_lora_weights = str(lora_weights.split('/')[-1]) + eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only, + eval_sharegpt_prompts_only_seed, + eval_sharegpt_as_output, + used_base_model, + used_lora_weights) + eval_filename = os.path.join(scoring_path, eval_filename) + + with torch.device("cuda"): + # ensure was set right above before examples generated + assert not stream_output, "stream_output=True does not make sense with example loop" + import time + from functools import partial + + # get score model + smodel, stokenizer, sdevice = get_score_model(**locals()) + + if not eval_sharegpt_as_output: + model, tokenizer, device = get_model(**locals()) + model_state = [model, tokenizer, device, base_model] + fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir) + else: + assert eval_sharegpt_prompts_only > 0 + + def get_response(*args, exi=0): + # assumes same ordering of examples and responses + yield responses[exi] + + fun = get_response + t0 = time.time() + score_dump = [] + + import matplotlib.pyplot as plt + + for exi, ex in enumerate(examples): + instruction = ex[eval_func_param_names.index('instruction_nochat')] + iinput = ex[eval_func_param_names.index('iinput_nochat')] + context = ex[eval_func_param_names.index('context')] + clear_torch_cache() + print("") + print("START" + "=" * 100) + print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else ''))) + print("-" * 105) + # fun yields as generator, so have to iterate over it + # Also means likely do NOT want --stream_output=True, else would show all generations + for res in fun(*tuple(ex), exi=exi): + print(res) + if smodel: + score_with_prompt = False + if score_with_prompt: + data_point = dict(instruction=instruction, input=iinput, context=context) + prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) + prompt = prompter.generate_prompt(data_point) + else: + # just raw input and output + assert iinput in [None, ''] # should be no iinput + assert context in [None, ''] # should be no context + prompt = instruction + cutoff_len = 768 if is_low_mem else 2048 + inputs = stokenizer(prompt, res, + return_tensors="pt", + truncation=True, + max_length=cutoff_len) + try: + score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] + except torch.cuda.OutOfMemoryError as e: + print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) + traceback.print_exc() + score = 0.0 + clear_torch_cache() + except (Exception, RuntimeError) as e: + if 'Expected all tensors to be on the same device' in str(e) or \ + 'expected scalar type Half but found Float' in str(e) or \ + 'probability tensor contains either' in str(e) or \ + 'cublasLt ran into an error!' in str(e): + print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), + flush=True) + traceback.print_exc() + score = 0.0 + clear_torch_cache() + else: + raise + print("SCORE %s: %s" % (exi, score), flush=True) + score_dump.append(ex + [prompt, res, score]) + # dump every score in case abort + df_scores = pd.DataFrame(score_dump, + columns=eval_func_param_names + eval_extra_columns) + df_scores.to_parquet(eval_filename, index=False) + # plot histogram so far + plt.figure(figsize=(10, 10)) + plt.hist(df_scores['score'], bins=20) + score_avg = np.mean(df_scores['score']) + score_median = np.median(df_scores['score']) + plt.title("Score avg: %s median: %s" % (score_avg, score_median)) + plt.savefig(eval_filename.replace('.parquet', '.png')) + plt.close() + + print("END" + "=" * 102) + print("") + t2 = time.time() + print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi))) + t1 = time.time() + print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) + return eval_filename + + if gradio: + go_gradio(**locals()) + + +def get_device(): + if torch.cuda.is_available(): + device = "cuda" + else: + raise RuntimeError("only cuda supported") + + return device + + +def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, + gpu_id=0, + use_auth_token=False): + """ + Ensure model gets on correct device + :param base_model: + :param model_loader: + :param load_half: + :param model_kwargs: + :param reward_type: + :param gpu_id: + :param use_auth_token: + :return: + """ + with init_empty_weights(): + from transformers import AutoConfig + config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token) + model = AutoModel.from_config( + config, + ) + + # NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model + # NOTE: Some models require avoiding sharding some layers, + # then would pass no_split_module_classes and give list of those layers. + device_map = infer_auto_device_map( + model, + dtype=torch.float16 if load_half else torch.float32, + ) + if hasattr(model, 'model'): + device_map_model = infer_auto_device_map( + model.model, + dtype=torch.float16 if load_half else torch.float32, + ) + device_map.update(device_map_model) + print('device_map: %s' % device_map, flush=True) + + if gpu_id >= 0: + # FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. + # So avoid for now, just put on first GPU, unless score_model, put on last + n_gpus = torch.cuda.device_count() + if reward_type: + device_map = {'': n_gpus - 1} + else: + device_map = {'': min(n_gpus - 1, gpu_id)} + + load_in_8bit = model_kwargs.get('load_in_8bit', False) + model_kwargs['device_map'] = device_map + + if load_in_8bit or not load_half: + model = model_loader.from_pretrained( + base_model, + **model_kwargs, + ) + else: + model = model_loader.from_pretrained( + base_model, + **model_kwargs, + ).half() + return model + + +def get_model( + load_8bit: bool = False, + load_half: bool = True, + infer_devices: bool = True, + base_model: str = '', + tokenizer_base_model: str = '', + lora_weights: str = "", + gpu_id: int = 0, + + llama_type: bool = None, + reward_type: bool = None, + local_files_only: bool = False, + resume_download: bool = True, + use_auth_token: Union[str, bool] = False, + compile: bool = True, + **kwargs, +): + """ + + :param load_8bit: load model in 8-bit, not supported by all models + :param load_half: load model in 16-bit + :param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case) + For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches + So it is not the default + :param base_model: name/path of base model + :param tokenizer_base_model: name/path of tokenizer + :param lora_weights: name/path + :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1) + :param llama_type: whether LLaMa type model + :param reward_type: reward type model for sequence classification + :param local_files_only: use local files instead of from HF + :param resume_download: resume downloads from HF + :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo + :parm compile: whether to compile torch model + :param kwargs: + :return: + """ + print("Get %s model" % base_model, flush=True) + if lora_weights is not None and lora_weights.strip(): + print("Get %s lora weights" % lora_weights, flush=True) + device = get_device() + + if 'gpt2' in base_model.lower(): + # RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half + load_8bit = False + + assert base_model.strip(), ( + "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)" + ) + llama_type = llama_type or "llama" in base_model + model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type) + if not tokenizer_base_model: + tokenizer_base_model = base_model + + if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): + tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, + local_files_only=local_files_only, + resume_download=resume_download, + use_auth_token=use_auth_token, + ) + else: + tokenizer = tokenizer_loader + + if isinstance(tokenizer, str): + # already a pipeline, tokenizer_loader is string for task + model = model_loader(tokenizer, + model=base_model, + device=0 if device == "cuda" else -1, + torch_dtype=torch.float16) + else: + assert device == "cuda", "Unsupported device %s" % device + model_kwargs = dict(local_files_only=local_files_only, + torch_dtype=torch.float16, + resume_download=resume_download, + use_auth_token=use_auth_token) + if 'mbart-' not in base_model.lower(): + model_kwargs.update(dict(load_in_8bit=load_8bit, + device_map={"": 0} if load_8bit else "auto", + )) + if 'OpenAssistant/reward-model'.lower() in base_model.lower(): + # could put on other GPUs + model_kwargs['device_map'] = {"": 0} + model_kwargs.pop('torch_dtype', None) + + if not lora_weights: + with torch.device("cuda"): + if infer_devices: + model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, + gpu_id=gpu_id, use_auth_token=use_auth_token) + else: + if load_half and not load_8bit: + model = model_loader.from_pretrained( + base_model, + **model_kwargs).half() + else: + model = model_loader.from_pretrained( + base_model, + **model_kwargs) + elif load_8bit: + model = model_loader.from_pretrained( + base_model, + **model_kwargs + ) + model = PeftModel.from_pretrained( + model, + lora_weights, + torch_dtype=torch.float16, + local_files_only=local_files_only, + resume_download=resume_download, + use_auth_token=use_auth_token, + device_map={"": 0}, # seems to be required + ) + else: + with torch.device("cuda"): + model = model_loader.from_pretrained( + base_model, + **model_kwargs + ) + model = PeftModel.from_pretrained( + model, + lora_weights, + torch_dtype=torch.float16, + local_files_only=local_files_only, + resume_download=resume_download, + use_auth_token=use_auth_token, + device_map="auto", + ) + if load_half: + model.half() + + # unwind broken decapoda-research config + if llama_type: + model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk + model.config.bos_token_id = 1 + model.config.eos_token_id = 2 + if 'gpt2' in base_model.lower(): + # add special tokens that otherwise all share the same id + tokenizer.add_special_tokens({'bos_token': '', + 'eos_token': '', + 'pad_token': ''}) + + if not isinstance(tokenizer, str): + model.eval() + if torch.__version__ >= "2" and sys.platform != "win32" and compile: + model = torch.compile(model) + + return model, tokenizer, device + + +def get_score_model(**kwargs): + # score model + if kwargs.get('score_model') is not None and kwargs.get('score_model').strip(): + score_all_kwargs = kwargs.copy() + score_all_kwargs['load_8bit'] = False + score_all_kwargs['load_half'] = False + score_all_kwargs['base_model'] = kwargs.get('score_model').strip() + score_all_kwargs['tokenizer_base_model'] = '' + score_all_kwargs['lora_weights'] = '' + score_all_kwargs['llama_type'] = False + score_all_kwargs['compile'] = False + smodel, stokenizer, sdevice = get_model(**score_all_kwargs) + else: + smodel, stokenizer, sdevice = None, None, None + return smodel, stokenizer, sdevice + + +def go_gradio(**kwargs): + # get default model + all_kwargs = kwargs.copy() + all_kwargs.update(locals()) + if kwargs.get('base_model') and not kwargs['login_mode_if_model0']: + model0, tokenizer0, device = get_model(**all_kwargs) + else: + # if empty model, then don't load anything, just get gradio up + model0, tokenizer0, device = None, None, None + model_state0 = [model0, tokenizer0, device, kwargs['base_model']] + + # get score model + smodel, stokenizer, sdevice = get_score_model(**all_kwargs) + + if 'mbart-' in kwargs['model_lower']: + instruction_label_nochat = "Text to translate" + else: + instruction_label_nochat = "Instruction" + instruction_label = "You (Shift-Enter or push Submit to send message)" + + title = 'h2oGPT' + if kwargs['verbose']: + description = f"""Model {kwargs['base_model']} Instruct dataset. + For more information, visit [the project's website](https://github.com/h2oai/h2ogpt). + Command: {str(' '.join(sys.argv))} + Hash: {get_githash()} + """ + else: + description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
" + if is_public: + description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
" + description += """

DISCLAIMERS:

  • The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.
  • """ + if kwargs['load_8bit']: + description += """
  • Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.
  • """ + description += """
  • Conversations may be used to improve h2oGPT. Do not share sensitive information.
  • """ + description += """
  • By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).

""" + + if kwargs['verbose']: + task_info_md = f""" + ### Task: {kwargs['task_info']}""" + else: + task_info_md = '' + + css_code = """footer {visibility: hidden;} +body{background:linear-gradient(#f5f5f5,#e5e5e5);} +body.dark{background:linear-gradient(#0d0d0d,#333333);}""" + + from gradio.themes.utils import Color, colors, fonts, sizes + if kwargs['h2ocolors']: + h2o_yellow = Color( + name="yellow", + c50="#fffef2", + c100="#fff9e6", + c200="#ffecb3", + c300="#ffe28c", + c400="#ffd659", + c500="#fec925", + c600="#e6ac00", + c700="#bf8f00", + c800="#a67c00", + c900="#664d00", + c950="#403000", + ) + h2o_gray = Color( + name="gray", + c50="#f2f2f2", + c100="#e5e5e5", + c200="#cccccc", + c300="#b2b2b2", + c400="#999999", + c500="#7f7f7f", + c600="#666666", + c700="#4c4c4c", + c800="#333333", + c900="#191919", + c950="#0d0d0d", + ) + colors_dict = dict(primary_hue=h2o_yellow, + secondary_hue=h2o_yellow, + neutral_hue=h2o_gray, + spacing_size=sizes.spacing_md, + radius_size=sizes.radius_md, + text_size=sizes.text_md, + ) + else: + colors_dict = dict(primary_hue=colors.indigo, + secondary_hue=colors.indigo, + neutral_hue=colors.gray, + spacing_size=sizes.spacing_md, + radius_size=sizes.radius_md, + text_size=sizes.text_md, + ) + + import gradio as gr + + if kwargs['gradio_avoid_processing_markdown']: + from gradio_client import utils as client_utils + from gradio.components import Chatbot + + # gradio has issue with taking too long to process input/output for markdown etc. + # Avoid for now, allow raw html to render, good enough for chatbot. + def _postprocess_chat_messages(self, chat_message: str): + if chat_message is None: + return None + elif isinstance(chat_message, (tuple, list)): + filepath = chat_message[0] + mime_type = client_utils.get_mimetype(filepath) + filepath = self.make_temp_copy_if_needed(filepath) + return { + "name": filepath, + "mime_type": mime_type, + "alt_text": chat_message[1] if len(chat_message) > 1 else None, + "data": None, # These last two fields are filled in by the frontend + "is_file": True, + } + elif isinstance(chat_message, str): + return chat_message + else: + raise ValueError(f"Invalid message for Chatbot component: {chat_message}") + + Chatbot._postprocess_chat_messages = _postprocess_chat_messages + + dark_js = """() => { + if (document.querySelectorAll('.dark').length) { + document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark')); + } else { + document.querySelector('body').classList.add('dark'); + } + }""" + + demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False) + callback = gr.CSVLogger() + # css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}' + # demo = gr.Blocks(theme='gstaff/xkcd', css=css_code) + + model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] + if kwargs['base_model'].strip() not in model_options: + lora_options = [kwargs['base_model'].strip()] + model_options + lora_options = kwargs['extra_lora_options'] + if kwargs['lora_weights'].strip() not in lora_options: + lora_options = [kwargs['lora_weights'].strip()] + lora_options + # always add in no lora case + # add fake space so doesn't go away in gradio dropdown + no_lora_str = no_model_str = '[None/Remove]' + lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double? + # always add in no model case so can free memory + # add fake space so doesn't go away in gradio dropdown + model_options = [no_model_str] + model_options + + # transcribe, will be detranscribed before use by evaluate() + if not kwargs['lora_weights'].strip(): + kwargs['lora_weights'] = no_lora_str + + if not kwargs['base_model'].strip(): + kwargs['base_model'] = no_model_str + + # transcribe for gradio + kwargs['gpu_id'] = str(kwargs['gpu_id']) + + no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' + output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get( + 'base_model') else no_model_msg + output_label0_model2 = no_model_msg + + with demo: + # avoid actual model/tokenizer here or anything that would be bad to deepcopy + # https://github.com/gradio-app/gradio/issues/3558 + model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']]) + model_state2 = gr.State([None, None, None, None]) + model_options_state = gr.State([model_options]) + lora_options_state = gr.State([lora_options]) + gr.Markdown( + f""" +

{title}

+ + {description} + {task_info_md} + """) + if is_hf: + gr.HTML( + '''
Duplicate SpaceDuplicate this Space to skip the queue and run in a private space
''') + + # go button visible if + base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0'] + go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") + normal_block = gr.Row(visible=not base_wanted) + with normal_block: + with gr.Tabs(): + with gr.Row(): + col_nochat = gr.Column(visible=not kwargs['chat']) + with col_nochat: # FIXME: for model comparison, and check rest + text_output_nochat = gr.Textbox(lines=5, label=output_label0) + instruction_nochat = gr.Textbox( + lines=4, label=instruction_label_nochat, + placeholder=kwargs['placeholder_instruction'], + ) + iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction", + placeholder=kwargs['placeholder_input']) + submit_nochat = gr.Button("Submit") + flag_btn_nochat = gr.Button("Flag") + if not kwargs['auto_score']: + with gr.Column(visible=kwargs['score_model']): + score_btn_nochat = gr.Button("Score last prompt & response") + score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) + else: + with gr.Column(visible=kwargs['score_model']): + score_text_nochat = gr.Textbox("Response Score: NA", show_label=False) + col_chat = gr.Column(visible=kwargs['chat']) + with col_chat: + with gr.Row(): + text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) + text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style( + height=kwargs['height'] or 400) + with gr.Row(): + with gr.Column(scale=50): + instruction = gr.Textbox( + lines=4, label=instruction_label, + placeholder=kwargs['placeholder_instruction'], + ) + with gr.Row(): + submit = gr.Button(value='Submit').style(full_width=False, size='sm') + stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') + with gr.Row(): + clear = gr.Button("New Conversation") + flag_btn = gr.Button("Flag") + if not kwargs['auto_score']: # FIXME: For checkbox model2 + with gr.Column(visible=kwargs['score_model']): + with gr.Row(): + score_btn = gr.Button("Score last prompt & response").style( + full_width=False, size='sm') + score_text = gr.Textbox("Response Score: NA", show_label=False) + score_res2 = gr.Row(visible=False) + with score_res2: + score_btn2 = gr.Button("Score last prompt & response 2").style( + full_width=False, size='sm') + score_text2 = gr.Textbox("Response Score2: NA", show_label=False) + else: + with gr.Column(visible=kwargs['score_model']): + score_text = gr.Textbox("Response Score: NA", show_label=False) + score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False) + retry = gr.Button("Regenerate") + undo = gr.Button("Undo") + with gr.TabItem("Input/Output"): + with gr.Row(): + if 'mbart-' in kwargs['model_lower']: + src_lang = gr.Dropdown(list(languages_covered().keys()), + value=kwargs['src_lang'], + label="Input Language") + tgt_lang = gr.Dropdown(list(languages_covered().keys()), + value=kwargs['tgt_lang'], + label="Output Language") + with gr.TabItem("Expert"): + with gr.Row(): + with gr.Column(): + stream_output = gr.components.Checkbox(label="Stream output", + value=kwargs['stream_output']) + prompt_type = gr.Dropdown(prompt_types_strings, + value=kwargs['prompt_type'], label="Prompt Type", + visible=not is_public) + prompt_type2 = gr.Dropdown(prompt_types_strings, + value=kwargs['prompt_type'], label="Prompt Type Model 2", + visible=not is_public and False) + do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k", + value=kwargs['do_sample']) + temperature = gr.Slider(minimum=0.01, maximum=3, + value=kwargs['temperature'], + label="Temperature", + info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") + top_p = gr.Slider(minimum=0, maximum=1, + value=kwargs['top_p'], label="Top p", + info="Cumulative probability of tokens to sample from") + top_k = gr.Slider( + minimum=0, maximum=100, step=1, + value=kwargs['top_k'], label="Top k", + info='Num. tokens to sample from' + ) + max_beams = 8 if not is_low_mem else 2 + num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, + value=min(max_beams, kwargs['num_beams']), label="Beams", + info="Number of searches for optimal overall probability. " + "Uses more GPU memory/compute") + max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens'] + max_new_tokens = gr.Slider( + minimum=1, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", + ) + min_new_tokens = gr.Slider( + minimum=0, maximum=max_max_new_tokens, step=1, + value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", + ) + early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", + value=kwargs['early_stopping']) + max_max_time = 60 * 5 if not is_low_mem else 60 + max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, + value=min(max_max_time, kwargs['max_time']), label="Max. time", + info="Max. time to search optimal output.") + repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, + value=kwargs['repetition_penalty'], + label="Repetition Penalty") + num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, + value=kwargs['num_return_sequences'], + label="Number Returns", info="Must be <= num_beams", + visible=not is_public) + iinput = gr.Textbox(lines=4, label="Input", + placeholder=kwargs['placeholder_input'], + visible=not is_public) + context = gr.Textbox(lines=3, label="System Pre-Context", + info="Directly pre-appended without prompt processing", + visible=not is_public and not kwargs['chat']) + chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'], + visible=not is_public) + + with gr.TabItem("Models"): + load_msg = "Load-Unload Model/LORA" if not is_public \ + else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO" + load_msg2 = "Load-Unload Model/LORA 2" if not is_public \ + else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2" + compare_checkbox = gr.components.Checkbox(label="Compare Mode", + value=False, visible=not is_public) + with gr.Row(): + n_gpus = torch.cuda.device_count() + n_gpus_list = [str(x) for x in list(range(-1, n_gpus))] + with gr.Column(): + with gr.Row(): + with gr.Column(scale=50): + model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", + value=kwargs['base_model']) + lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", + value=kwargs['lora_weights'], visible=kwargs['show_lora']) + with gr.Column(scale=1): + load_model_button = gr.Button(load_msg) + model_load8bit_checkbox = gr.components.Checkbox( + label="Load 8-bit [Not all models support]", + value=kwargs['load_8bit']) + model_infer_devices_checkbox = gr.components.Checkbox( + label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]", + value=kwargs['infer_devices']) + model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", + value=kwargs['gpu_id']) + model_used = gr.Textbox(label="Current Model", value=kwargs['base_model']) + lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], + visible=kwargs['show_lora']) + with gr.Row(): + with gr.Column(scale=50): + new_model = gr.Textbox(label="New Model HF name/path") + new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) + with gr.Column(scale=1): + add_model_button = gr.Button("Add new model name") + add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']) + col_model2 = gr.Column(visible=False) + with col_model2: + with gr.Row(): + with gr.Column(scale=50): + model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2", + value=no_model_str) + lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2", + value=no_lora_str, + visible=kwargs['show_lora']) + with gr.Column(scale=1): + load_model_button2 = gr.Button(load_msg2) + model_load8bit_checkbox2 = gr.components.Checkbox( + label="Load 8-bit 2 [Not all models support]", + value=kwargs['load_8bit']) + model_infer_devices_checkbox2 = gr.components.Checkbox( + label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]", + value=kwargs[ + 'infer_devices']) + model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]", + value=kwargs['gpu_id']) + # no model/lora loaded ever in model2 by default + model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str) + lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str, + visible=kwargs['show_lora']) + with gr.TabItem("System"): + admin_row = gr.Row() + with admin_row: + admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) + admin_btn = gr.Button(value="Admin Access", visible=is_public) + system_row = gr.Row(visible=not is_public) + with system_row: + with gr.Column(): + with gr.Row(): + system_btn = gr.Button(value='Get System Info') + system_text = gr.Textbox(label='System Info') + + with gr.Row(): + zip_btn = gr.Button("Zip") + zip_text = gr.Textbox(label="Zip file name") + file_output = gr.File() + with gr.Row(): + s3up_btn = gr.Button("S3UP") + s3up_text = gr.Textbox(label='S3UP result') + + # Get flagged data + zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) + zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text]) + s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text) + + def check_admin_pass(x): + return gr.update(visible=x == admin_pass) + + def close_admin(x): + return gr.update(visible=not (x == admin_pass)) + + admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \ + .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row) + + # Get inputs to evaluate() + inputs_list = get_inputs_list(locals(), kwargs['model_lower']) + from functools import partial + all_kwargs = kwargs.copy() + all_kwargs.update(locals()) + kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} + fun = partial(evaluate, + **kwargs_evaluate) + fun2 = partial(evaluate, + **kwargs_evaluate) + + dark_mode_btn = gr.Button("Dark Mode", variant="primary").style( + size="sm", + ) + dark_mode_btn.click( + None, + None, + None, + _js=dark_js, + api_name="dark", + ) + + # Control chat and non-chat blocks, which can be independently used by chat checkbox swap + def col_nochat_fun(x): + return gr.Column.update(visible=not x) + + def col_chat_fun(x): + return gr.Column.update(visible=x) + + def context_fun(x): + return gr.Textbox.update(visible=not x) + + chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \ + .then(col_chat_fun, chat, col_chat) \ + .then(context_fun, chat, context) + + # examples after submit or any other buttons for chat or no chat + if kwargs['examples'] is not None and kwargs['show_examples']: + gr.Examples(examples=kwargs['examples'], inputs=inputs_list) + + # Score + def score_last_response(*args, nochat=False, model2=False): + """ Similar to user() """ + args_list = list(args) + + max_length_tokenize = 512 if is_low_mem else 2048 + cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM + + if not nochat: + history = args_list[-1] + if history is None: + if not model2: + # maybe only doing first model, no need to complain + print("Bad history in scoring last response, fix for now", flush=True) + history = [] + if smodel is not None and \ + stokenizer is not None and \ + sdevice is not None and \ + history is not None and len(history) > 0 and \ + history[-1] is not None and \ + len(history[-1]) >= 2: + os.environ['TOKENIZERS_PARALLELISM'] = 'false' + + question = history[-1][0] + + answer = history[-1][1] + else: + return 'Response Score: NA' + else: + answer = args_list[-1] + instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat') + question = args_list[instruction_nochat_arg_id] + + if question is None: + return 'Response Score: Bad Question' + if answer is None: + return 'Response Score: Bad Answer' + + question = question[-cutoff_len:] + answer = answer[-cutoff_len:] + + inputs = stokenizer(question, answer, + return_tensors="pt", + truncation=True, + max_length=max_length_tokenize).to(smodel.device) + try: + score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] + except torch.cuda.OutOfMemoryError as e: + print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) + del inputs + traceback.print_exc() + clear_torch_cache() + return 'Response Score: GPU OOM' + except (Exception, RuntimeError) as e: + if 'Expected all tensors to be on the same device' in str(e) or \ + 'expected scalar type Half but found Float' in str(e) or \ + 'probability tensor contains either' in str(e) or \ + 'cublasLt ran into an error!' in str(e): + print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), + flush=True) + traceback.print_exc() + clear_torch_cache() + return 'Response Score: GPU Error' + else: + raise + os.environ['TOKENIZERS_PARALLELISM'] = 'true' + return 'Response Score: {:.1%}'.format(score) + + def noop_score_last_response(*args, **kwargs): + return "Response Score: Disabled" + if kwargs['score_model']: + score_fun = score_last_response + else: + score_fun = noop_score_last_response + + score_args = dict(fn=score_fun, + inputs=inputs_list + [text_output], + outputs=[score_text], + ) + score_args2 = dict(fn=partial(score_fun, model2=True), + inputs=inputs_list + [text_output2], + outputs=[score_text2], + ) + + score_args_nochat = dict(fn=partial(score_fun, nochat=True), + inputs=inputs_list + [text_output_nochat], + outputs=[score_text_nochat], + ) + if not kwargs['auto_score']: + score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \ + .then(**score_args2, queue=stream_output, api_name='score2') + score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output, + api_name='score_nochat') + + def user(*args, undo=False, sanitize_user_prompt=True, model2=False): + """ + User that fills history for bot + :param args: + :param undo: + :param sanitize_user_prompt: + :param model2: + :return: + """ + args_list = list(args) + user_message = args_list[0] + input1 = args_list[1] + context1 = args_list[2] + if input1 and not user_message.endswith(':'): + user_message1 = user_message + ":" + input1 + elif input1: + user_message1 = user_message + input1 + else: + user_message1 = user_message + if sanitize_user_prompt: + from better_profanity import profanity + user_message1 = profanity.censor(user_message1) + + history = args_list[-1] + if undo and history: + history.pop() + args_list = args_list[:-1] # FYI, even if unused currently + if history is None: + if not model2: + # no need to complain so often unless model1 + print("Bad history, fix for now", flush=True) + history = [] + # ensure elements not mixed across models as output, + # even if input is currently same source + history = history.copy() + if undo: + return history + else: + # FIXME: compare, same history for now + return history + [[user_message1, None]] + + def bot(*args, retry=False): + """ + bot that consumes history for user input + instruction (from input_list) itself is not consumed by bot + :param args: + :param retry: + :return: + """ + args_list = list(args).copy() + history = args_list[-1] # model_state is -2 + if retry and history: + history.pop() + if not history: + print("No history", flush=True) + return + # ensure output will be unique to models + history = history.copy() + instruction1 = history[-1][0] + context1 = '' + if kwargs['chat_history'] > 0: + prompt_type_arg_id = eval_func_param_names.index('prompt_type') + prompt_type1 = args_list[prompt_type_arg_id] + chat_arg_id = eval_func_param_names.index('chat') + chat1 = args_list[chat_arg_id] + context1 = '' + for histi in range(len(history) - 1): + data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) + context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace( + '
', '\n') + if not context1.endswith('\n'): + context1 += '\n' + if context1 and not context1.endswith('\n'): + context1 += '\n' # ensure if terminates abruptly, then human continues on next line + args_list[0] = instruction1 # override original instruction with history from user + # only include desired chat history + args_list[2] = context1[-kwargs['chat_history']:] + model_state1 = args_list[-2] + if model_state1[0] is None or model_state1[0] == no_model_str: + return + args_list = args_list[:-2] + fun1 = partial(evaluate, + model_state1, + **kwargs_evaluate) + try: + for output in fun1(*tuple(args_list)): + bot_message = output + history[-1][1] = bot_message + yield history + except StopIteration: + yield history + except RuntimeError as e: + if "generator raised StopIteration" in str(e): + # assume last entry was bad, undo + history.pop() + yield history + raise + except Exception as e: + # put error into user input + history[-1][0] = "Exception: %s" % str(e) + yield history + raise + return + + # NORMAL MODEL + user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), + inputs=inputs_list + [text_output], + outputs=text_output, + ) + bot_args = dict(fn=bot, + inputs=inputs_list + [model_state] + [text_output], + outputs=text_output, + ) + retry_bot_args = dict(fn=functools.partial(bot, retry=True), + inputs=inputs_list + [model_state] + [text_output], + outputs=text_output, + ) + undo_user_args = dict(fn=functools.partial(user, undo=True), + inputs=inputs_list + [text_output], + outputs=text_output, + ) + + # MODEL2 + user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True), + inputs=inputs_list + [text_output2], + outputs=text_output2, + ) + bot_args2 = dict(fn=bot, + inputs=inputs_list + [model_state2] + [text_output2], + outputs=text_output2, + ) + retry_bot_args2 = dict(fn=functools.partial(bot, retry=True), + inputs=inputs_list + [model_state2] + [text_output2], + outputs=text_output2, + ) + undo_user_args2 = dict(fn=functools.partial(user, undo=True), + inputs=inputs_list + [text_output2], + outputs=text_output2, + ) + + def clear_instruct(): + return gr.Textbox.update(value='') + + if kwargs['auto_score']: + # in case 2nd model, consume instruction first, so can clear quickly + # bot doesn't consume instruction itself, just history from user, so why works + submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \ + .then(**user_args2, queue=stream_output, api_name='instruction2') \ + .then(clear_instruct, None, instruction) \ + .then(**bot_args, api_name='instruction_bot') \ + .then(**score_args, api_name='instruction_bot_score') \ + .then(**bot_args2, api_name='instruction_bot2') \ + .then(**score_args2, api_name='instruction_bot_score2') \ + .then(clear_torch_cache) + submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \ + .then(**user_args2, queue=stream_output, api_name='submit2') \ + .then(**bot_args, api_name='submit_bot') \ + .then(clear_instruct, None, instruction) \ + .then(**score_args, api_name='submit_bot_score') \ + .then(**bot_args2, api_name='submit_bot2') \ + .then(**score_args2, api_name='submit_bot_score2') \ + .then(clear_torch_cache) + submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \ + .then(**user_args2, queue=stream_output, api_name='retry2') \ + .then(clear_instruct, None, instruction) \ + .then(**retry_bot_args, api_name='retry_bot') \ + .then(**score_args, api_name='retry_bot_score') \ + .then(**retry_bot_args2, api_name='retry_bot2') \ + .then(**score_args2, api_name='retry_bot_score2') \ + .then(clear_torch_cache) + submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \ + .then(**score_args, api_name='undo_score') \ + .then(**undo_user_args2, queue=stream_output, api_name='undo2') \ + .then(**score_args2, api_name='undo_score2') \ + .then(clear_instruct, None, instruction) + else: + submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \ + .then(**user_args2, queue=stream_output, api_name='instruction2') \ + .then(clear_instruct, None, instruction) \ + .then(**bot_args, api_name='instruction_bot') \ + .then(**bot_args2, api_name='instruction_bot2') \ + .then(clear_torch_cache) + submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \ + .then(**user_args2, queue=stream_output, api_name='submit2') \ + .then(clear_instruct, None, instruction) \ + .then(**bot_args, api_name='submit_bot') \ + .then(**bot_args2, api_name='submit_bot2') \ + .then(clear_torch_cache) + submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \ + .then(**user_args2, queue=stream_output, api_name='retry2') \ + .then(clear_instruct, None, instruction) \ + .then(**retry_bot_args, api_name='retry_bot') \ + .then(**retry_bot_args2, api_name='retry_bot2') \ + .then(clear_torch_cache) + submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \ + .then(**undo_user_args2, queue=stream_output, api_name='undo2') + + # does both models + clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \ + .then(lambda: None, None, text_output2, queue=False, api_name='clear2') + # FIXME: compare + submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list, + outputs=text_output_nochat, api_name='submit_nochat') \ + .then(**score_args_nochat, api_name='instruction_bot_score_nochat') \ + .then(clear_torch_cache) + + def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id): + # ensure old model removed from GPU memory + if kwargs['debug']: + print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) + + if isinstance(model_state_old[0], str) and model0 is not None: + # best can do, move model loaded at first to CPU + model0.cpu() + + if model_state_old[0] is not None and not isinstance(model_state_old[0], str): + try: + model_state_old[0].cpu() + except Exception as e: + # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! + print("Unable to put model on CPU: %s" % str(e), flush=True) + del model_state_old[0] + model_state_old[0] = None + + if model_state_old[1] is not None and not isinstance(model_state_old[1], str): + del model_state_old[1] + model_state_old[1] = None + + clear_torch_cache() + if kwargs['debug']: + print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) + + if model_name is None or model_name == no_model_str: + # no-op if no model, just free memory + # no detranscribe needed for model, never go into evaluate + lora_weights = no_lora_str + return [None, None, None, model_name], model_name, lora_weights, prompt_type_old + + all_kwargs1 = all_kwargs.copy() + all_kwargs1['base_model'] = model_name.strip() + all_kwargs1['load_8bit'] = load_8bit + all_kwargs1['infer_devices'] = infer_devices + all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe + model_lower = model_name.strip().lower() + if model_lower in inv_prompt_type_to_model_lower: + prompt_type1 = inv_prompt_type_to_model_lower[model_lower] + else: + prompt_type1 = prompt_type_old + + # detranscribe + if lora_weights == no_lora_str: + lora_weights = '' + + all_kwargs1['lora_weights'] = lora_weights.strip() + model1, tokenizer1, device1 = get_model(**all_kwargs1) + clear_torch_cache() + + if kwargs['debug']: + print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) + return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1 + + def dropdown_prompt_type_list(x): + return gr.Dropdown.update(value=x) + + def chatbot_list(x, model_used_in): + return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') + + load_model_args = dict(fn=load_model, + inputs=[model_choice, lora_choice, model_state, prompt_type, + model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu], + outputs=[model_state, model_used, lora_used, prompt_type]) + prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) + chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) + nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat) + if not is_public: + load_model_event = load_model_button.click(**load_model_args) \ + .then(**prompt_update_args) \ + .then(**chatbot_update_args) \ + .then(**nochat_update_args) \ + .then(clear_torch_cache) + + load_model_args2 = dict(fn=load_model, + inputs=[model_choice2, lora_choice2, model_state2, prompt_type2, + model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2], + outputs=[model_state2, model_used2, lora_used2, prompt_type2]) + prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2) + chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2) + if not is_public: + load_model_event2 = load_model_button2.click(**load_model_args2) \ + .then(**prompt_update_args2) \ + .then(**chatbot_update_args2) \ + .then(clear_torch_cache) + + def dropdown_model_list(list0, x): + new_state = [list0[0] + [x]] + new_options = [*new_state[0]] + return gr.Dropdown.update(value=x, choices=new_options), \ + gr.Dropdown.update(value=x, choices=new_options), \ + '', new_state + + add_model_event = add_model_button.click(fn=dropdown_model_list, + inputs=[model_options_state, new_model], + outputs=[model_choice, model_choice2, new_model, model_options_state]) + + def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2): + new_state = [list0[0] + [x]] + new_options = [*new_state[0]] + # don't switch drop-down to added lora if already have model loaded + x1 = x if model_used1 == no_model_str else lora_used1 + x2 = x if model_used2 == no_model_str else lora_used2 + return gr.Dropdown.update(value=x1, choices=new_options), \ + gr.Dropdown.update(value=x2, choices=new_options), \ + '', new_state + + add_lora_event = add_lora_button.click(fn=dropdown_lora_list, + inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2], + outputs=[lora_choice, lora_choice2, new_lora, lora_options_state]) + + go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \ + .then(lambda: gr.update(visible=True), None, normal_block) \ + .then(**load_model_args).then(**prompt_update_args) + + def compare_textbox_fun(x): + return gr.Textbox.update(visible=x) + + def compare_column_fun(x): + return gr.Column.update(visible=x) + + def compare_prompt_fun(x): + return gr.Dropdown.update(visible=x) + + compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \ + .then(compare_column_fun, compare_checkbox, col_model2) \ + .then(compare_prompt_fun, compare_checkbox, prompt_type2) \ + .then(compare_textbox_fun, compare_checkbox, score_text2) + # FIXME: add score_res2 in condition, but do better + + # callback for logging flagged input/output + callback.setup(inputs_list + [text_output], "flagged_data_points") + flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, + api_name='flag') + flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, + api_name='flag_nochat') + + def get_system_info(): + return gr.Textbox.update(value=system_info_print()) + + system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info') + + # don't pass text_output, don't want to clear output, just stop it + # FIXME: have to click once to stop output and second time to stop GPUs going + stop_btn.click(lambda: None, None, None, + cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3], + queue=False, api_name='stop').then(clear_torch_cache) + demo.load(None,None,None, _js=dark_js) + + demo.queue(concurrency_count=1) + favicon_path = "h2o-logo.svg" + demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, + favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True) + print("Started GUI", flush=True) + if kwargs['block_gradio_exit']: + demo.block_thread() + + +input_args_list = ['model_state'] +inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0'] + + +def get_inputs_list(inputs_dict, model_lower): + """ + map gradio objects in locals() to inputs for evaluate(). + :param inputs_dict: + :param model_lower: + :return: + """ + inputs_list_names = list(inspect.signature(evaluate).parameters) + inputs_list = [] + for k in inputs_list_names: + if k == 'kwargs': + continue + if k in input_args_list + inputs_kwargs_list: + # these are added via partial, not taken as input + continue + if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: + continue + inputs_list.append(inputs_dict[k]) + return inputs_list + + +eval_func_param_names = ['instruction', + 'iinput', + 'context', + 'stream_output', + 'prompt_type', + 'temperature', + 'top_p', + 'top_k', + 'num_beams', + 'max_new_tokens', + 'min_new_tokens', + 'early_stopping', + 'max_time', + 'repetition_penalty', + 'num_return_sequences', + 'do_sample', + 'chat', + 'instruction_nochat', + 'iinput_nochat', + ] + + +def evaluate( + model_state, + # START NOTE: Examples must have same order of parameters + instruction, + iinput, + context, + stream_output, + prompt_type, + temperature, + top_p, + top_k, + num_beams, + max_new_tokens, + min_new_tokens, + early_stopping, + max_time, + repetition_penalty, + num_return_sequences, + do_sample, + chat, + instruction_nochat, + iinput_nochat, + # END NOTE: Examples must have same order of parameters + src_lang=None, + tgt_lang=None, + debug=False, + save_dir=None, + hard_stop_list=None, + sanitize_bot_response=True, + model_state0=None, + **kwargs, +): + if debug: + locals_dict = locals().copy() + locals_dict.pop('model_state', None) + locals_dict.pop('model_state0', None) + print(locals_dict) + + no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation" + + if model_state0 is None: + # e.g. for no gradio case, set dummy value, else should be set + model_state0 = [None, None, None, None] + + if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str): + # try to free-up original model (i.e. list was passed as reference) + if model_state0 is not None and model_state0[0] is not None: + model_state0[0].cpu() + model_state0[0] = None + # try to free-up original tokenizer (i.e. list was passed as reference) + if model_state0 is not None and model_state0[1] is not None: + model_state0[1] = None + clear_torch_cache() + model, tokenizer, device, base_model = model_state + elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None: + assert isinstance(model_state[0], str) + model, tokenizer, device, base_model = model_state0 + else: + raise AssertionError(no_model_msg) + + if base_model is None: + raise AssertionError(no_model_msg) + + assert base_model.strip(), no_model_msg + assert model, "Model is missing" + assert tokenizer, "Tokenizer is missing" + + # choose chat or non-chat mode + if not chat: + instruction = instruction_nochat + iinput = iinput_nochat + + data_point = dict(context=context, instruction=instruction, input=iinput) + prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) + prompt = prompter.generate_prompt(data_point) + + if hard_stop_list is None: + # acts like undo on user entry and bot response + hard_stop_list = [] + + if isinstance(tokenizer, str): + # pipeline + if tokenizer == "summarization": + key = 'summary_text' + else: + raise RuntimeError("No such task type %s" % tokenizer) + # NOTE: uses max_length only + yield model(prompt, max_length=max_new_tokens)[0][key] + + if 'mbart-' in base_model.lower(): + assert src_lang is not None + tokenizer.src_lang = languages_covered()[src_lang] + + if chat: + # override, ignore user change + num_return_sequences = 1 + if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']: + if prompt_type == 'human_bot': + # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1] + # stopping only starts once output is beyond prompt + # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added + stop_words = [human, bot, '\n' + human, '\n' + bot] + encounters = [1, 2] + elif prompt_type == 'instruct_vicuna': + # even below is not enough, generic strings and many ways to encode + stop_words = [ + '### Human:', + """ +### Human:""", + """ +### Human: +""", + '### Assistant:', + """ +### Assistant:""", + """ +### Assistant: +""", + ] + encounters = [1, 2] + else: + # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise + stop_words = ['### End'] + encounters = [1] + stop_words_ids = [ + tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] + # handle single token case + stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids] + stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0] + # avoid padding in front of tokens + if tokenizer.pad_token: + stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids] + # handle fake \n added + stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)] + # build stopper + stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)]) + else: + stopping_criteria = StoppingCriteriaList() + + # help to avoid errors like: + # RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 + # RuntimeError: expected scalar type Half but found Float + # with - 256 + max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256 + cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens + output_smallest = 30 * 4 + prompt = prompt[-cutoff_len - output_smallest:] + inputs = tokenizer(prompt, + return_tensors="pt", + truncation=True, + max_length=max_length_tokenize) + if debug and len(inputs["input_ids"]) > 0: + print('input_ids length', len(inputs["input_ids"][0]), flush=True) + input_ids = inputs["input_ids"].to(device) + generation_config = GenerationConfig( + temperature=float(temperature), + top_p=float(top_p), + top_k=top_k, + num_beams=num_beams, + do_sample=do_sample, + repetition_penalty=float(repetition_penalty), + num_return_sequences=num_return_sequences, + renormalize_logits=True, + remove_invalid_values=True, + **kwargs, + ) + + gen_kwargs = dict(input_ids=input_ids, + generation_config=generation_config, + return_dict_in_generate=True, + output_scores=True, + max_new_tokens=max_new_tokens, # prompt + new + min_new_tokens=min_new_tokens, # prompt + new + early_stopping=early_stopping, # False, True, "never" + max_time=max_time, + stopping_criteria=stopping_criteria, + ) + if 'gpt2' in base_model.lower(): + gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) + elif 'mbart-' in base_model.lower(): + assert tgt_lang is not None + tgt_lang = languages_covered()[tgt_lang] + gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) + else: + gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id)) + + decoder = functools.partial(tokenizer.decode, + skip_special_tokens=True, + clean_up_tokenization_spaces=True, + ) + decoder_raw = functools.partial(tokenizer.decode, + skip_special_tokens=False, + clean_up_tokenization_spaces=True, + ) + + with torch.no_grad(): + # decoded tokenized prompt can deviate from prompt due to special characters + inputs_decoded = decoder(input_ids[0]) + inputs_decoded_raw = decoder_raw(input_ids[0]) + if inputs_decoded == prompt: + # normal + pass + elif inputs_decoded.lstrip() == prompt.lstrip(): + # sometimes extra space in front, make prompt same for prompt removal + prompt = inputs_decoded + elif inputs_decoded_raw == prompt: + # some models specify special tokens that are part of normal prompt, so can't skip them + inputs_decoded_raw = inputs_decoded + decoder = decoder_raw + else: + print("WARNING: Special characters in prompt", flush=True) + if stream_output: + def generate(callback=None, **kwargs): + # re-order stopping so Stream first and get out all chunks before stop for other reasons + stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy() + kwargs['stopping_criteria'] = StoppingCriteriaList() + kwargs['stopping_criteria'].append(Stream(func=callback)) + for stopping_criteria1 in stopping_criteria0: + kwargs['stopping_criteria'].append(stopping_criteria1) + + try: + model.generate(**kwargs) + except torch.cuda.OutOfMemoryError as e: + print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), + flush=True) + if kwargs['input_ids'] is not None: + kwargs['input_ids'].cpu() + kwargs['input_ids'] = None + traceback.print_exc() + clear_torch_cache() + return + except (Exception, RuntimeError) as e: + if 'Expected all tensors to be on the same device' in str(e) or \ + 'expected scalar type Half but found Float' in str(e) or \ + 'probability tensor contains either' in str(e) or \ + 'cublasLt ran into an error!' in str(e): + print( + "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), + flush=True) + traceback.print_exc() + clear_torch_cache() + if raise_generate_gpu_exceptions: + raise + return + else: + raise + + decoded_output = None + for output in CallbackToGenerator(generate, callback=None, **gen_kwargs): + decoded_output = decoder(output) + if output[-1] in [tokenizer.eos_token_id]: + if debug: + print("HIT EOS", flush=True) + break + if any(ele in decoded_output for ele in hard_stop_list): + raise StopIteration + yield prompter.get_response(decoded_output, prompt=inputs_decoded, + sanitize_bot_response=sanitize_bot_response) + if save_dir and decoded_output: + save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) + else: + outputs = model.generate(**gen_kwargs) + outputs = [decoder(s) for s in outputs.sequences] + yield prompter.get_response(outputs, prompt=inputs_decoded, + sanitize_bot_response=sanitize_bot_response) + if save_dir and outputs and len(outputs) >= 1: + decoded_output = prompt + outputs[0] + save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) + + +def get_generate_params(model_lower, chat, + stream_output, show_examples, + prompt_type, temperature, top_p, top_k, num_beams, + max_new_tokens, min_new_tokens, early_stopping, max_time, + repetition_penalty, num_return_sequences, + do_sample): + use_defaults = False + use_default_examples = True + examples = [] + task_info = f"{prompt_type}" + if model_lower: + print(f"Using Model {model_lower}", flush=True) + else: + print("No model defined yet", flush=True) + + min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 + early_stopping = early_stopping if early_stopping is not None else False + max_time_defaults = 60 * 3 + max_time = max_time if max_time is not None else max_time_defaults + + if not prompt_type and model_lower in inv_prompt_type_to_model_lower: + prompt_type = inv_prompt_type_to_model_lower[model_lower] + + # examples at first don't include chat, instruction_nochat, iinput_nochat, added at end + if show_examples is None: + if chat: + show_examples = False + else: + show_examples = True + + summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? +Philipp: Sure you can use the new Hugging Face Deep Learning Container. +Jeff: ok. +Jeff: and how can I get started? +Jeff: where can I find documentation? +Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" + + if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: + placeholder_instruction = summarize_example1 + placeholder_input = "" + use_defaults = True + use_default_examples = False + examples += [ + [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, + 1.0, 1, + False]] + task_info = "Summarization" + elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: + placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" + placeholder_input = "" + use_defaults = True + use_default_examples = True + task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" + elif 'mbart-' in model_lower: + placeholder_instruction = "The girl has long hair." + placeholder_input = "" + use_defaults = True + use_default_examples = False + examples += [ + [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, + 1.0, 1, + False]] + elif 'gpt2' in model_lower: + placeholder_instruction = "The sky is" + placeholder_input = "" + prompt_type = prompt_type or 'plain' + use_default_examples = True # some will be odd "continuations" but can be ok + examples += [ + [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, + 1.0, 1, + False]] + task_info = "Auto-complete phrase, code, etc." + use_defaults = True + else: + if chat: + placeholder_instruction = "Enter a question or imperative." + else: + placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." + placeholder_input = "" + if model_lower: + prompt_type = prompt_type or 'human_bot' + else: + prompt_type = '' + examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "", + stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1, + False]] + task_info = "No task" + if prompt_type == 'instruct': + task_info = "Answer question or follow imperative as instruction with optionally input." + elif prompt_type == 'plain': + task_info = "Auto-complete phrase, code, etc." + elif prompt_type == 'human_bot': + if chat: + task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" + else: + task_info = "Ask question/imperative (input concatenated with instruction)" + + # revert to plain if still nothing + prompt_type = prompt_type or 'plain' + if use_defaults: + temperature = 1.0 if temperature is None else temperature + top_p = 1.0 if top_p is None else top_p + top_k = 40 if top_k is None else top_k + num_beams = num_beams or 1 + max_new_tokens = max_new_tokens or 128 + repetition_penalty = repetition_penalty or 1.07 + num_return_sequences = min(num_beams, num_return_sequences or 1) + do_sample = False if do_sample is None else do_sample + else: + temperature = 0.1 if temperature is None else temperature + top_p = 0.75 if top_p is None else top_p + top_k = 40 if top_k is None else top_k + if chat: + num_beams = num_beams or 1 + else: + num_beams = num_beams or 4 + max_new_tokens = max_new_tokens or 256 + repetition_penalty = repetition_penalty or 1.07 + num_return_sequences = min(num_beams, num_return_sequences or 1) + do_sample = False if do_sample is None else do_sample + # doesn't include chat, instruction_nochat, iinput_nochat, added later + params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, + early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] + + if use_default_examples: + examples += [ + ["Translate English to French", "Good morning"] + params_list, + ["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, + ["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, + [ + "Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", + ''] + params_list, + ['Translate to German: My name is Arthur', ''] + params_list, + ["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, + ['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', + ''] + params_list, + ['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, + ['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, + ["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, + [ + "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", + ''] + params_list, + ['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, + [ + 'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', + ''] + params_list, + ["""def area_of_rectangle(a: float, b: float): + \"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, + ["""# a function in native python: +def mean(a): + return sum(a)/len(a) + +# the same function using numpy: +import numpy as np +def mean(a):""", ''] + params_list, + ["""X = np.random.randn(100, 100) +y = np.random.randint(0, 1, 100) + +# fit random forest classifier with 20 estimators""", ''] + params_list, + ] + + src_lang = "English" + tgt_lang = "Russian" + + # move to correct position + for example in examples: + example += [chat, '', ''] + # adjust examples if non-chat mode + if not chat: + example[eval_func_param_names.index('instruction_nochat')] = example[ + eval_func_param_names.index('instruction')] + example[eval_func_param_names.index('instruction')] = '' + + example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')] + example[eval_func_param_names.index('iinput')] = '' + + return placeholder_instruction, placeholder_input, \ + stream_output, show_examples, \ + prompt_type, temperature, top_p, top_k, num_beams, \ + max_new_tokens, min_new_tokens, early_stopping, max_time, \ + repetition_penalty, num_return_sequences, \ + do_sample, \ + src_lang, tgt_lang, \ + examples, \ + task_info + + +def languages_covered(): + # https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered + covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" + covered = covered.split(', ') + covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} + return covered + + +def test_test_prompt(prompt_type='instruct', data_point=0): + example_data_point = example_data_points[data_point] + example_data_point.pop('output', None) + return generate_prompt(example_data_point, prompt_type, False, False) + + +if __name__ == "__main__": + print(""" + WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B + python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' + python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' + + # generate without lora weights, no prompt + python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' + python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' + + python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' + # OpenChatKit settings: + python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 + + python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False + python generate.py --base_model='t5-large' --prompt_type='simple_instruct' + python generate.py --base_model='philschmid/bart-large-cnn-samsum' + python generate.py --base_model='philschmid/flan-t5-base-samsum' + python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' + + python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' + + must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False + can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned + python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot' + + python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b + + """, flush=True) + fire.Fire(main)