diff --git "a/app.py" "b/app.py"
new file mode 100644--- /dev/null
+++ "b/app.py"
@@ -0,0 +1,1986 @@
+import functools
+import inspect
+import sys
+import os
+import traceback
+import typing
+from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up
+
+SEED = 1236
+set_seed(SEED)
+
+os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
+from typing import Union
+import numpy as np
+import pandas as pd
+
+import fire
+import torch
+from peft import PeftModel
+from transformers import GenerationConfig, StoppingCriteriaList, AutoModel
+from accelerate import init_empty_weights, infer_auto_device_map
+
+from prompter import Prompter
+
+from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \
+ human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower
+from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub
+
+is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
+is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
+is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
+is_low_mem = is_hf # assumes run on 24GB consumer GPU
+admin_pass = os.getenv("ADMIN_PASS")
+# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
+raise_generate_gpu_exceptions = True
+
+eval_extra_columns = ['prompt', 'response', 'score']
+
+def main(
+ load_8bit: bool = False,
+ load_half: bool = True,
+ infer_devices: bool = True,
+ base_model: str = '',
+ tokenizer_base_model: str = '',
+ lora_weights: str = "",
+ gpu_id: int = 0, # if infer_devices = True and gpu_id != -1
+
+ prompt_type: Union[int, str] = None,
+ # input to generation
+ temperature: float = None,
+ top_p: float = None,
+ top_k: int = None,
+ num_beams: int = None,
+ repetition_penalty: float = None,
+ num_return_sequences: int = None,
+ do_sample: bool = None,
+ max_new_tokens: int = None,
+ min_new_tokens: int = None,
+ early_stopping: Union[bool, str] = None,
+ max_time: float = None,
+
+ llama_type: bool = None,
+ debug: bool = False,
+ save_dir: str = None,
+ share: bool = True,
+ local_files_only: bool = False,
+ resume_download: bool = True,
+ use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
+
+ src_lang: str = "English",
+ tgt_lang: str = "Russian",
+
+ gradio: bool = True,
+ gradio_avoid_processing_markdown: bool = False,
+ chat: bool = True,
+ chat_history: int = 4096, # character length of chat context/history
+ stream_output: bool = True,
+ show_examples: bool = None,
+ verbose: bool = False,
+ h2ocolors: bool = True,
+ height: int = 400,
+ show_lora: bool = True,
+ # set to True to load --base_model after client logs in,
+ # to be able to free GPU memory when model is swapped
+ login_mode_if_model0: bool = False,
+ block_gradio_exit: bool = True,
+
+ sanitize_user_prompt: bool = True,
+ sanitize_bot_response: bool = True,
+
+ extra_model_options: typing.List[str] = [],
+ extra_lora_options: typing.List[str] = [],
+
+ score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2',
+ auto_score: bool = True,
+
+ eval_sharegpt_prompts_only: int = 0,
+ eval_sharegpt_prompts_only_seed: int = 1234,
+ eval_sharegpt_as_output: bool = False,
+):
+ # allow set token directly
+ use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
+
+ if is_public:
+ temperature = 0.4
+ top_p = 0.85
+ top_k = 70
+ do_sample = True
+ if is_low_mem:
+ base_model = 'h2oai/h2ogpt-oasst1-512-12b'
+ load_8bit = True
+ else:
+ base_model = 'h2oai/h2ogpt-oasst1-512-20b'
+ if is_low_mem:
+ load_8bit = True
+ if is_hf:
+ # must override share if in spaces
+ share = False
+ save_dir = os.getenv('SAVE_DIR', save_dir)
+ score_model = os.getenv('SCORE_MODEL', score_model)
+ if score_model == 'None':
+ score_model = ''
+
+ # get defaults
+ model_lower = base_model.lower()
+ if not gradio:
+ # force, else not single response like want to look at
+ stream_output = False
+ # else prompt removal can mess up output
+ chat = False
+
+ placeholder_instruction, placeholder_input, \
+ stream_output, show_examples, \
+ prompt_type, temperature, top_p, top_k, num_beams, \
+ max_new_tokens, min_new_tokens, early_stopping, max_time, \
+ repetition_penalty, num_return_sequences, \
+ do_sample, \
+ src_lang, tgt_lang, \
+ examples, \
+ task_info = \
+ get_generate_params(model_lower, chat,
+ stream_output, show_examples,
+ prompt_type, temperature, top_p, top_k, num_beams,
+ max_new_tokens, min_new_tokens, early_stopping, max_time,
+ repetition_penalty, num_return_sequences,
+ do_sample,
+ )
+
+ if not gradio:
+ if eval_sharegpt_prompts_only > 0:
+ # override default examples with shareGPT ones for human-level eval purposes only
+ eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
+ if not os.path.isfile(eval_filename):
+ os.system(
+ 'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
+ import json
+ data = json.load(open(eval_filename, 'rt'))
+ # focus on data that starts with human, else likely chopped from other data
+ turn_start = 0 # odd in general
+ data = [x for x in data if len(x['conversations']) > turn_start + 1 and
+ x['conversations'][turn_start]['from'] == 'human' and
+ x['conversations'][turn_start + 1]['from'] == 'gpt']
+ np.random.seed(eval_sharegpt_prompts_only_seed)
+ example1 = examples[-1] # pick reference example
+ examples = []
+ responses = []
+ for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)):
+ assert data[i]['conversations'][turn_start]['from'] == 'human'
+ instruction = data[i]['conversations'][turn_start]['value']
+ assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
+ output = data[i]['conversations'][turn_start + 1]['value']
+ examplenew = example1.copy()
+ assert not chat, "No gradio must use chat=False, uses nochat isntruct"
+ examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
+ examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
+ examplenew[eval_func_param_names.index('context')] = '' # no context
+ examples.append(examplenew)
+ responses.append(output)
+
+ num_examples = len(examples)
+ scoring_path = 'scoring'
+ os.makedirs(scoring_path, exist_ok=True)
+ if eval_sharegpt_as_output:
+ used_base_model = 'gpt35'
+ used_lora_weights = ''
+ else:
+ used_base_model = str(base_model.split('/')[-1])
+ used_lora_weights = str(lora_weights.split('/')[-1])
+ eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only,
+ eval_sharegpt_prompts_only_seed,
+ eval_sharegpt_as_output,
+ used_base_model,
+ used_lora_weights)
+ eval_filename = os.path.join(scoring_path, eval_filename)
+
+ with torch.device("cuda"):
+ # ensure was set right above before examples generated
+ assert not stream_output, "stream_output=True does not make sense with example loop"
+ import time
+ from functools import partial
+
+ # get score model
+ smodel, stokenizer, sdevice = get_score_model(**locals())
+
+ if not eval_sharegpt_as_output:
+ model, tokenizer, device = get_model(**locals())
+ model_state = [model, tokenizer, device, base_model]
+ fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir)
+ else:
+ assert eval_sharegpt_prompts_only > 0
+
+ def get_response(*args, exi=0):
+ # assumes same ordering of examples and responses
+ yield responses[exi]
+
+ fun = get_response
+ t0 = time.time()
+ score_dump = []
+
+ import matplotlib.pyplot as plt
+
+ for exi, ex in enumerate(examples):
+ instruction = ex[eval_func_param_names.index('instruction_nochat')]
+ iinput = ex[eval_func_param_names.index('iinput_nochat')]
+ context = ex[eval_func_param_names.index('context')]
+ clear_torch_cache()
+ print("")
+ print("START" + "=" * 100)
+ print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
+ print("-" * 105)
+ # fun yields as generator, so have to iterate over it
+ # Also means likely do NOT want --stream_output=True, else would show all generations
+ for res in fun(*tuple(ex), exi=exi):
+ print(res)
+ if smodel:
+ score_with_prompt = False
+ if score_with_prompt:
+ data_point = dict(instruction=instruction, input=iinput, context=context)
+ prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
+ prompt = prompter.generate_prompt(data_point)
+ else:
+ # just raw input and output
+ assert iinput in [None, ''] # should be no iinput
+ assert context in [None, ''] # should be no context
+ prompt = instruction
+ cutoff_len = 768 if is_low_mem else 2048
+ inputs = stokenizer(prompt, res,
+ return_tensors="pt",
+ truncation=True,
+ max_length=cutoff_len)
+ try:
+ score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
+ except torch.cuda.OutOfMemoryError as e:
+ print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
+ traceback.print_exc()
+ score = 0.0
+ clear_torch_cache()
+ except (Exception, RuntimeError) as e:
+ if 'Expected all tensors to be on the same device' in str(e) or \
+ 'expected scalar type Half but found Float' in str(e) or \
+ 'probability tensor contains either' in str(e) or \
+ 'cublasLt ran into an error!' in str(e):
+ print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
+ flush=True)
+ traceback.print_exc()
+ score = 0.0
+ clear_torch_cache()
+ else:
+ raise
+ print("SCORE %s: %s" % (exi, score), flush=True)
+ score_dump.append(ex + [prompt, res, score])
+ # dump every score in case abort
+ df_scores = pd.DataFrame(score_dump,
+ columns=eval_func_param_names + eval_extra_columns)
+ df_scores.to_parquet(eval_filename, index=False)
+ # plot histogram so far
+ plt.figure(figsize=(10, 10))
+ plt.hist(df_scores['score'], bins=20)
+ score_avg = np.mean(df_scores['score'])
+ score_median = np.median(df_scores['score'])
+ plt.title("Score avg: %s median: %s" % (score_avg, score_median))
+ plt.savefig(eval_filename.replace('.parquet', '.png'))
+ plt.close()
+
+ print("END" + "=" * 102)
+ print("")
+ t2 = time.time()
+ print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi)))
+ t1 = time.time()
+ print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
+ return eval_filename
+
+ if gradio:
+ go_gradio(**locals())
+
+
+def get_device():
+ if torch.cuda.is_available():
+ device = "cuda"
+ else:
+ raise RuntimeError("only cuda supported")
+
+ return device
+
+
+def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
+ gpu_id=0,
+ use_auth_token=False):
+ """
+ Ensure model gets on correct device
+ :param base_model:
+ :param model_loader:
+ :param load_half:
+ :param model_kwargs:
+ :param reward_type:
+ :param gpu_id:
+ :param use_auth_token:
+ :return:
+ """
+ with init_empty_weights():
+ from transformers import AutoConfig
+ config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
+ model = AutoModel.from_config(
+ config,
+ )
+
+ # NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model
+ # NOTE: Some models require avoiding sharding some layers,
+ # then would pass no_split_module_classes and give list of those layers.
+ device_map = infer_auto_device_map(
+ model,
+ dtype=torch.float16 if load_half else torch.float32,
+ )
+ if hasattr(model, 'model'):
+ device_map_model = infer_auto_device_map(
+ model.model,
+ dtype=torch.float16 if load_half else torch.float32,
+ )
+ device_map.update(device_map_model)
+ print('device_map: %s' % device_map, flush=True)
+
+ if gpu_id >= 0:
+ # FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set.
+ # So avoid for now, just put on first GPU, unless score_model, put on last
+ n_gpus = torch.cuda.device_count()
+ if reward_type:
+ device_map = {'': n_gpus - 1}
+ else:
+ device_map = {'': min(n_gpus - 1, gpu_id)}
+
+ load_in_8bit = model_kwargs.get('load_in_8bit', False)
+ model_kwargs['device_map'] = device_map
+
+ if load_in_8bit or not load_half:
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs,
+ )
+ else:
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs,
+ ).half()
+ return model
+
+
+def get_model(
+ load_8bit: bool = False,
+ load_half: bool = True,
+ infer_devices: bool = True,
+ base_model: str = '',
+ tokenizer_base_model: str = '',
+ lora_weights: str = "",
+ gpu_id: int = 0,
+
+ llama_type: bool = None,
+ reward_type: bool = None,
+ local_files_only: bool = False,
+ resume_download: bool = True,
+ use_auth_token: Union[str, bool] = False,
+ compile: bool = True,
+ **kwargs,
+):
+ """
+
+ :param load_8bit: load model in 8-bit, not supported by all models
+ :param load_half: load model in 16-bit
+ :param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case)
+ For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches
+ So it is not the default
+ :param base_model: name/path of base model
+ :param tokenizer_base_model: name/path of tokenizer
+ :param lora_weights: name/path
+ :param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
+ :param llama_type: whether LLaMa type model
+ :param reward_type: reward type model for sequence classification
+ :param local_files_only: use local files instead of from HF
+ :param resume_download: resume downloads from HF
+ :param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
+ :parm compile: whether to compile torch model
+ :param kwargs:
+ :return:
+ """
+ print("Get %s model" % base_model, flush=True)
+ if lora_weights is not None and lora_weights.strip():
+ print("Get %s lora weights" % lora_weights, flush=True)
+ device = get_device()
+
+ if 'gpt2' in base_model.lower():
+ # RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half
+ load_8bit = False
+
+ assert base_model.strip(), (
+ "Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
+ )
+ llama_type = llama_type or "llama" in base_model
+ model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
+ if not tokenizer_base_model:
+ tokenizer_base_model = base_model
+
+ if tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
+ tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
+ local_files_only=local_files_only,
+ resume_download=resume_download,
+ use_auth_token=use_auth_token,
+ )
+ else:
+ tokenizer = tokenizer_loader
+
+ if isinstance(tokenizer, str):
+ # already a pipeline, tokenizer_loader is string for task
+ model = model_loader(tokenizer,
+ model=base_model,
+ device=0 if device == "cuda" else -1,
+ torch_dtype=torch.float16)
+ else:
+ assert device == "cuda", "Unsupported device %s" % device
+ model_kwargs = dict(local_files_only=local_files_only,
+ torch_dtype=torch.float16,
+ resume_download=resume_download,
+ use_auth_token=use_auth_token)
+ if 'mbart-' not in base_model.lower():
+ model_kwargs.update(dict(load_in_8bit=load_8bit,
+ device_map={"": 0} if load_8bit else "auto",
+ ))
+ if 'OpenAssistant/reward-model'.lower() in base_model.lower():
+ # could put on other GPUs
+ model_kwargs['device_map'] = {"": 0}
+ model_kwargs.pop('torch_dtype', None)
+
+ if not lora_weights:
+ with torch.device("cuda"):
+ if infer_devices:
+ model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
+ gpu_id=gpu_id, use_auth_token=use_auth_token)
+ else:
+ if load_half and not load_8bit:
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs).half()
+ else:
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs)
+ elif load_8bit:
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs
+ )
+ model = PeftModel.from_pretrained(
+ model,
+ lora_weights,
+ torch_dtype=torch.float16,
+ local_files_only=local_files_only,
+ resume_download=resume_download,
+ use_auth_token=use_auth_token,
+ device_map={"": 0}, # seems to be required
+ )
+ else:
+ with torch.device("cuda"):
+ model = model_loader.from_pretrained(
+ base_model,
+ **model_kwargs
+ )
+ model = PeftModel.from_pretrained(
+ model,
+ lora_weights,
+ torch_dtype=torch.float16,
+ local_files_only=local_files_only,
+ resume_download=resume_download,
+ use_auth_token=use_auth_token,
+ device_map="auto",
+ )
+ if load_half:
+ model.half()
+
+ # unwind broken decapoda-research config
+ if llama_type:
+ model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
+ model.config.bos_token_id = 1
+ model.config.eos_token_id = 2
+ if 'gpt2' in base_model.lower():
+ # add special tokens that otherwise all share the same id
+ tokenizer.add_special_tokens({'bos_token': '',
+ 'eos_token': '',
+ 'pad_token': ''})
+
+ if not isinstance(tokenizer, str):
+ model.eval()
+ if torch.__version__ >= "2" and sys.platform != "win32" and compile:
+ model = torch.compile(model)
+
+ return model, tokenizer, device
+
+
+def get_score_model(**kwargs):
+ # score model
+ if kwargs.get('score_model') is not None and kwargs.get('score_model').strip():
+ score_all_kwargs = kwargs.copy()
+ score_all_kwargs['load_8bit'] = False
+ score_all_kwargs['load_half'] = False
+ score_all_kwargs['base_model'] = kwargs.get('score_model').strip()
+ score_all_kwargs['tokenizer_base_model'] = ''
+ score_all_kwargs['lora_weights'] = ''
+ score_all_kwargs['llama_type'] = False
+ score_all_kwargs['compile'] = False
+ smodel, stokenizer, sdevice = get_model(**score_all_kwargs)
+ else:
+ smodel, stokenizer, sdevice = None, None, None
+ return smodel, stokenizer, sdevice
+
+
+def go_gradio(**kwargs):
+ # get default model
+ all_kwargs = kwargs.copy()
+ all_kwargs.update(locals())
+ if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
+ model0, tokenizer0, device = get_model(**all_kwargs)
+ else:
+ # if empty model, then don't load anything, just get gradio up
+ model0, tokenizer0, device = None, None, None
+ model_state0 = [model0, tokenizer0, device, kwargs['base_model']]
+
+ # get score model
+ smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
+
+ if 'mbart-' in kwargs['model_lower']:
+ instruction_label_nochat = "Text to translate"
+ else:
+ instruction_label_nochat = "Instruction"
+ instruction_label = "You (Shift-Enter or push Submit to send message)"
+
+ title = 'h2oGPT'
+ if kwargs['verbose']:
+ description = f"""Model {kwargs['base_model']} Instruct dataset.
+ For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
+ Command: {str(' '.join(sys.argv))}
+ Hash: {get_githash()}
+ """
+ else:
+ description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
"
+ if is_public:
+ description += "If this host is busy, try [gpt.h2o.ai 20B](https://gpt.h2o.ai) and [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) and [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)
"
+ description += """ DISCLAIMERS:
- The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.
"""
+ if kwargs['load_8bit']:
+ description += """- Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.
"""
+ description += """- Conversations may be used to improve h2oGPT. Do not share sensitive information.
"""
+ description += """- By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).
"""
+
+ if kwargs['verbose']:
+ task_info_md = f"""
+ ### Task: {kwargs['task_info']}"""
+ else:
+ task_info_md = ''
+
+ css_code = """footer {visibility: hidden;}
+body{background:linear-gradient(#f5f5f5,#e5e5e5);}
+body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
+
+ from gradio.themes.utils import Color, colors, fonts, sizes
+ if kwargs['h2ocolors']:
+ h2o_yellow = Color(
+ name="yellow",
+ c50="#fffef2",
+ c100="#fff9e6",
+ c200="#ffecb3",
+ c300="#ffe28c",
+ c400="#ffd659",
+ c500="#fec925",
+ c600="#e6ac00",
+ c700="#bf8f00",
+ c800="#a67c00",
+ c900="#664d00",
+ c950="#403000",
+ )
+ h2o_gray = Color(
+ name="gray",
+ c50="#f2f2f2",
+ c100="#e5e5e5",
+ c200="#cccccc",
+ c300="#b2b2b2",
+ c400="#999999",
+ c500="#7f7f7f",
+ c600="#666666",
+ c700="#4c4c4c",
+ c800="#333333",
+ c900="#191919",
+ c950="#0d0d0d",
+ )
+ colors_dict = dict(primary_hue=h2o_yellow,
+ secondary_hue=h2o_yellow,
+ neutral_hue=h2o_gray,
+ spacing_size=sizes.spacing_md,
+ radius_size=sizes.radius_md,
+ text_size=sizes.text_md,
+ )
+ else:
+ colors_dict = dict(primary_hue=colors.indigo,
+ secondary_hue=colors.indigo,
+ neutral_hue=colors.gray,
+ spacing_size=sizes.spacing_md,
+ radius_size=sizes.radius_md,
+ text_size=sizes.text_md,
+ )
+
+ import gradio as gr
+
+ if kwargs['gradio_avoid_processing_markdown']:
+ from gradio_client import utils as client_utils
+ from gradio.components import Chatbot
+
+ # gradio has issue with taking too long to process input/output for markdown etc.
+ # Avoid for now, allow raw html to render, good enough for chatbot.
+ def _postprocess_chat_messages(self, chat_message: str):
+ if chat_message is None:
+ return None
+ elif isinstance(chat_message, (tuple, list)):
+ filepath = chat_message[0]
+ mime_type = client_utils.get_mimetype(filepath)
+ filepath = self.make_temp_copy_if_needed(filepath)
+ return {
+ "name": filepath,
+ "mime_type": mime_type,
+ "alt_text": chat_message[1] if len(chat_message) > 1 else None,
+ "data": None, # These last two fields are filled in by the frontend
+ "is_file": True,
+ }
+ elif isinstance(chat_message, str):
+ return chat_message
+ else:
+ raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
+
+ Chatbot._postprocess_chat_messages = _postprocess_chat_messages
+
+ dark_js = """() => {
+ if (document.querySelectorAll('.dark').length) {
+ document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
+ } else {
+ document.querySelector('body').classList.add('dark');
+ }
+ }"""
+
+ demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False)
+ callback = gr.CSVLogger()
+ # css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}'
+ # demo = gr.Blocks(theme='gstaff/xkcd', css=css_code)
+
+ model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
+ if kwargs['base_model'].strip() not in model_options:
+ lora_options = [kwargs['base_model'].strip()] + model_options
+ lora_options = kwargs['extra_lora_options']
+ if kwargs['lora_weights'].strip() not in lora_options:
+ lora_options = [kwargs['lora_weights'].strip()] + lora_options
+ # always add in no lora case
+ # add fake space so doesn't go away in gradio dropdown
+ no_lora_str = no_model_str = '[None/Remove]'
+ lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
+ # always add in no model case so can free memory
+ # add fake space so doesn't go away in gradio dropdown
+ model_options = [no_model_str] + model_options
+
+ # transcribe, will be detranscribed before use by evaluate()
+ if not kwargs['lora_weights'].strip():
+ kwargs['lora_weights'] = no_lora_str
+
+ if not kwargs['base_model'].strip():
+ kwargs['base_model'] = no_model_str
+
+ # transcribe for gradio
+ kwargs['gpu_id'] = str(kwargs['gpu_id'])
+
+ no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
+ output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
+ 'base_model') else no_model_msg
+ output_label0_model2 = no_model_msg
+
+ with demo:
+ # avoid actual model/tokenizer here or anything that would be bad to deepcopy
+ # https://github.com/gradio-app/gradio/issues/3558
+ model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']])
+ model_state2 = gr.State([None, None, None, None])
+ model_options_state = gr.State([model_options])
+ lora_options_state = gr.State([lora_options])
+ gr.Markdown(
+ f"""
+ {title}
+
+ {description}
+ {task_info_md}
+ """)
+ if is_hf:
+ gr.HTML(
+ '''
Duplicate this Space to skip the queue and run in a private space''')
+
+ # go button visible if
+ base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
+ go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
+ normal_block = gr.Row(visible=not base_wanted)
+ with normal_block:
+ with gr.Tabs():
+ with gr.Row():
+ col_nochat = gr.Column(visible=not kwargs['chat'])
+ with col_nochat: # FIXME: for model comparison, and check rest
+ text_output_nochat = gr.Textbox(lines=5, label=output_label0)
+ instruction_nochat = gr.Textbox(
+ lines=4, label=instruction_label_nochat,
+ placeholder=kwargs['placeholder_instruction'],
+ )
+ iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
+ placeholder=kwargs['placeholder_input'])
+ submit_nochat = gr.Button("Submit")
+ flag_btn_nochat = gr.Button("Flag")
+ if not kwargs['auto_score']:
+ with gr.Column(visible=kwargs['score_model']):
+ score_btn_nochat = gr.Button("Score last prompt & response")
+ score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
+ else:
+ with gr.Column(visible=kwargs['score_model']):
+ score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
+ col_chat = gr.Column(visible=kwargs['chat'])
+ with col_chat:
+ with gr.Row():
+ text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
+ text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
+ height=kwargs['height'] or 400)
+ with gr.Row():
+ with gr.Column(scale=50):
+ instruction = gr.Textbox(
+ lines=4, label=instruction_label,
+ placeholder=kwargs['placeholder_instruction'],
+ )
+ with gr.Row():
+ submit = gr.Button(value='Submit').style(full_width=False, size='sm')
+ stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm')
+ with gr.Row():
+ clear = gr.Button("New Conversation")
+ flag_btn = gr.Button("Flag")
+ if not kwargs['auto_score']: # FIXME: For checkbox model2
+ with gr.Column(visible=kwargs['score_model']):
+ with gr.Row():
+ score_btn = gr.Button("Score last prompt & response").style(
+ full_width=False, size='sm')
+ score_text = gr.Textbox("Response Score: NA", show_label=False)
+ score_res2 = gr.Row(visible=False)
+ with score_res2:
+ score_btn2 = gr.Button("Score last prompt & response 2").style(
+ full_width=False, size='sm')
+ score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
+ else:
+ with gr.Column(visible=kwargs['score_model']):
+ score_text = gr.Textbox("Response Score: NA", show_label=False)
+ score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
+ retry = gr.Button("Regenerate")
+ undo = gr.Button("Undo")
+ with gr.TabItem("Input/Output"):
+ with gr.Row():
+ if 'mbart-' in kwargs['model_lower']:
+ src_lang = gr.Dropdown(list(languages_covered().keys()),
+ value=kwargs['src_lang'],
+ label="Input Language")
+ tgt_lang = gr.Dropdown(list(languages_covered().keys()),
+ value=kwargs['tgt_lang'],
+ label="Output Language")
+ with gr.TabItem("Expert"):
+ with gr.Row():
+ with gr.Column():
+ stream_output = gr.components.Checkbox(label="Stream output",
+ value=kwargs['stream_output'])
+ prompt_type = gr.Dropdown(prompt_types_strings,
+ value=kwargs['prompt_type'], label="Prompt Type",
+ visible=not is_public)
+ prompt_type2 = gr.Dropdown(prompt_types_strings,
+ value=kwargs['prompt_type'], label="Prompt Type Model 2",
+ visible=not is_public and False)
+ do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k",
+ value=kwargs['do_sample'])
+ temperature = gr.Slider(minimum=0.01, maximum=3,
+ value=kwargs['temperature'],
+ label="Temperature",
+ info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
+ top_p = gr.Slider(minimum=0, maximum=1,
+ value=kwargs['top_p'], label="Top p",
+ info="Cumulative probability of tokens to sample from")
+ top_k = gr.Slider(
+ minimum=0, maximum=100, step=1,
+ value=kwargs['top_k'], label="Top k",
+ info='Num. tokens to sample from'
+ )
+ max_beams = 8 if not is_low_mem else 2
+ num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
+ value=min(max_beams, kwargs['num_beams']), label="Beams",
+ info="Number of searches for optimal overall probability. "
+ "Uses more GPU memory/compute")
+ max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens']
+ max_new_tokens = gr.Slider(
+ minimum=1, maximum=max_max_new_tokens, step=1,
+ value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
+ )
+ min_new_tokens = gr.Slider(
+ minimum=0, maximum=max_max_new_tokens, step=1,
+ value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
+ )
+ early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
+ value=kwargs['early_stopping'])
+ max_max_time = 60 * 5 if not is_low_mem else 60
+ max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
+ value=min(max_max_time, kwargs['max_time']), label="Max. time",
+ info="Max. time to search optimal output.")
+ repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
+ value=kwargs['repetition_penalty'],
+ label="Repetition Penalty")
+ num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
+ value=kwargs['num_return_sequences'],
+ label="Number Returns", info="Must be <= num_beams",
+ visible=not is_public)
+ iinput = gr.Textbox(lines=4, label="Input",
+ placeholder=kwargs['placeholder_input'],
+ visible=not is_public)
+ context = gr.Textbox(lines=3, label="System Pre-Context",
+ info="Directly pre-appended without prompt processing",
+ visible=not is_public and not kwargs['chat'])
+ chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
+ visible=not is_public)
+
+ with gr.TabItem("Models"):
+ load_msg = "Load-Unload Model/LORA" if not is_public \
+ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
+ load_msg2 = "Load-Unload Model/LORA 2" if not is_public \
+ else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
+ compare_checkbox = gr.components.Checkbox(label="Compare Mode",
+ value=False, visible=not is_public)
+ with gr.Row():
+ n_gpus = torch.cuda.device_count()
+ n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
+ with gr.Column():
+ with gr.Row():
+ with gr.Column(scale=50):
+ model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
+ value=kwargs['base_model'])
+ lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
+ value=kwargs['lora_weights'], visible=kwargs['show_lora'])
+ with gr.Column(scale=1):
+ load_model_button = gr.Button(load_msg)
+ model_load8bit_checkbox = gr.components.Checkbox(
+ label="Load 8-bit [Not all models support]",
+ value=kwargs['load_8bit'])
+ model_infer_devices_checkbox = gr.components.Checkbox(
+ label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
+ value=kwargs['infer_devices'])
+ model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
+ value=kwargs['gpu_id'])
+ model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'])
+ lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
+ visible=kwargs['show_lora'])
+ with gr.Row():
+ with gr.Column(scale=50):
+ new_model = gr.Textbox(label="New Model HF name/path")
+ new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
+ with gr.Column(scale=1):
+ add_model_button = gr.Button("Add new model name")
+ add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora'])
+ col_model2 = gr.Column(visible=False)
+ with col_model2:
+ with gr.Row():
+ with gr.Column(scale=50):
+ model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
+ value=no_model_str)
+ lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
+ value=no_lora_str,
+ visible=kwargs['show_lora'])
+ with gr.Column(scale=1):
+ load_model_button2 = gr.Button(load_msg2)
+ model_load8bit_checkbox2 = gr.components.Checkbox(
+ label="Load 8-bit 2 [Not all models support]",
+ value=kwargs['load_8bit'])
+ model_infer_devices_checkbox2 = gr.components.Checkbox(
+ label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
+ value=kwargs[
+ 'infer_devices'])
+ model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
+ value=kwargs['gpu_id'])
+ # no model/lora loaded ever in model2 by default
+ model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
+ lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
+ visible=kwargs['show_lora'])
+ with gr.TabItem("System"):
+ admin_row = gr.Row()
+ with admin_row:
+ admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
+ admin_btn = gr.Button(value="Admin Access", visible=is_public)
+ system_row = gr.Row(visible=not is_public)
+ with system_row:
+ with gr.Column():
+ with gr.Row():
+ system_btn = gr.Button(value='Get System Info')
+ system_text = gr.Textbox(label='System Info')
+
+ with gr.Row():
+ zip_btn = gr.Button("Zip")
+ zip_text = gr.Textbox(label="Zip file name")
+ file_output = gr.File()
+ with gr.Row():
+ s3up_btn = gr.Button("S3UP")
+ s3up_text = gr.Textbox(label='S3UP result')
+
+ # Get flagged data
+ zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
+ zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text])
+ s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text)
+
+ def check_admin_pass(x):
+ return gr.update(visible=x == admin_pass)
+
+ def close_admin(x):
+ return gr.update(visible=not (x == admin_pass))
+
+ admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \
+ .then(close_admin, inputs=admin_pass_textbox, outputs=admin_row)
+
+ # Get inputs to evaluate()
+ inputs_list = get_inputs_list(locals(), kwargs['model_lower'])
+ from functools import partial
+ all_kwargs = kwargs.copy()
+ all_kwargs.update(locals())
+ kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
+ fun = partial(evaluate,
+ **kwargs_evaluate)
+ fun2 = partial(evaluate,
+ **kwargs_evaluate)
+
+ dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
+ size="sm",
+ )
+ dark_mode_btn.click(
+ None,
+ None,
+ None,
+ _js=dark_js,
+ api_name="dark",
+ )
+
+ # Control chat and non-chat blocks, which can be independently used by chat checkbox swap
+ def col_nochat_fun(x):
+ return gr.Column.update(visible=not x)
+
+ def col_chat_fun(x):
+ return gr.Column.update(visible=x)
+
+ def context_fun(x):
+ return gr.Textbox.update(visible=not x)
+
+ chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \
+ .then(col_chat_fun, chat, col_chat) \
+ .then(context_fun, chat, context)
+
+ # examples after submit or any other buttons for chat or no chat
+ if kwargs['examples'] is not None and kwargs['show_examples']:
+ gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
+
+ # Score
+ def score_last_response(*args, nochat=False, model2=False):
+ """ Similar to user() """
+ args_list = list(args)
+
+ max_length_tokenize = 512 if is_low_mem else 2048
+ cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
+
+ if not nochat:
+ history = args_list[-1]
+ if history is None:
+ if not model2:
+ # maybe only doing first model, no need to complain
+ print("Bad history in scoring last response, fix for now", flush=True)
+ history = []
+ if smodel is not None and \
+ stokenizer is not None and \
+ sdevice is not None and \
+ history is not None and len(history) > 0 and \
+ history[-1] is not None and \
+ len(history[-1]) >= 2:
+ os.environ['TOKENIZERS_PARALLELISM'] = 'false'
+
+ question = history[-1][0]
+
+ answer = history[-1][1]
+ else:
+ return 'Response Score: NA'
+ else:
+ answer = args_list[-1]
+ instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
+ question = args_list[instruction_nochat_arg_id]
+
+ if question is None:
+ return 'Response Score: Bad Question'
+ if answer is None:
+ return 'Response Score: Bad Answer'
+
+ question = question[-cutoff_len:]
+ answer = answer[-cutoff_len:]
+
+ inputs = stokenizer(question, answer,
+ return_tensors="pt",
+ truncation=True,
+ max_length=max_length_tokenize).to(smodel.device)
+ try:
+ score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
+ except torch.cuda.OutOfMemoryError as e:
+ print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
+ del inputs
+ traceback.print_exc()
+ clear_torch_cache()
+ return 'Response Score: GPU OOM'
+ except (Exception, RuntimeError) as e:
+ if 'Expected all tensors to be on the same device' in str(e) or \
+ 'expected scalar type Half but found Float' in str(e) or \
+ 'probability tensor contains either' in str(e) or \
+ 'cublasLt ran into an error!' in str(e):
+ print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
+ flush=True)
+ traceback.print_exc()
+ clear_torch_cache()
+ return 'Response Score: GPU Error'
+ else:
+ raise
+ os.environ['TOKENIZERS_PARALLELISM'] = 'true'
+ return 'Response Score: {:.1%}'.format(score)
+
+ def noop_score_last_response(*args, **kwargs):
+ return "Response Score: Disabled"
+ if kwargs['score_model']:
+ score_fun = score_last_response
+ else:
+ score_fun = noop_score_last_response
+
+ score_args = dict(fn=score_fun,
+ inputs=inputs_list + [text_output],
+ outputs=[score_text],
+ )
+ score_args2 = dict(fn=partial(score_fun, model2=True),
+ inputs=inputs_list + [text_output2],
+ outputs=[score_text2],
+ )
+
+ score_args_nochat = dict(fn=partial(score_fun, nochat=True),
+ inputs=inputs_list + [text_output_nochat],
+ outputs=[score_text_nochat],
+ )
+ if not kwargs['auto_score']:
+ score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \
+ .then(**score_args2, queue=stream_output, api_name='score2')
+ score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
+ api_name='score_nochat')
+
+ def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
+ """
+ User that fills history for bot
+ :param args:
+ :param undo:
+ :param sanitize_user_prompt:
+ :param model2:
+ :return:
+ """
+ args_list = list(args)
+ user_message = args_list[0]
+ input1 = args_list[1]
+ context1 = args_list[2]
+ if input1 and not user_message.endswith(':'):
+ user_message1 = user_message + ":" + input1
+ elif input1:
+ user_message1 = user_message + input1
+ else:
+ user_message1 = user_message
+ if sanitize_user_prompt:
+ from better_profanity import profanity
+ user_message1 = profanity.censor(user_message1)
+
+ history = args_list[-1]
+ if undo and history:
+ history.pop()
+ args_list = args_list[:-1] # FYI, even if unused currently
+ if history is None:
+ if not model2:
+ # no need to complain so often unless model1
+ print("Bad history, fix for now", flush=True)
+ history = []
+ # ensure elements not mixed across models as output,
+ # even if input is currently same source
+ history = history.copy()
+ if undo:
+ return history
+ else:
+ # FIXME: compare, same history for now
+ return history + [[user_message1, None]]
+
+ def bot(*args, retry=False):
+ """
+ bot that consumes history for user input
+ instruction (from input_list) itself is not consumed by bot
+ :param args:
+ :param retry:
+ :return:
+ """
+ args_list = list(args).copy()
+ history = args_list[-1] # model_state is -2
+ if retry and history:
+ history.pop()
+ if not history:
+ print("No history", flush=True)
+ return
+ # ensure output will be unique to models
+ history = history.copy()
+ instruction1 = history[-1][0]
+ context1 = ''
+ if kwargs['chat_history'] > 0:
+ prompt_type_arg_id = eval_func_param_names.index('prompt_type')
+ prompt_type1 = args_list[prompt_type_arg_id]
+ chat_arg_id = eval_func_param_names.index('chat')
+ chat1 = args_list[chat_arg_id]
+ context1 = ''
+ for histi in range(len(history) - 1):
+ data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
+ context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace(
+ '
', '\n')
+ if not context1.endswith('\n'):
+ context1 += '\n'
+ if context1 and not context1.endswith('\n'):
+ context1 += '\n' # ensure if terminates abruptly, then human continues on next line
+ args_list[0] = instruction1 # override original instruction with history from user
+ # only include desired chat history
+ args_list[2] = context1[-kwargs['chat_history']:]
+ model_state1 = args_list[-2]
+ if model_state1[0] is None or model_state1[0] == no_model_str:
+ return
+ args_list = args_list[:-2]
+ fun1 = partial(evaluate,
+ model_state1,
+ **kwargs_evaluate)
+ try:
+ for output in fun1(*tuple(args_list)):
+ bot_message = output
+ history[-1][1] = bot_message
+ yield history
+ except StopIteration:
+ yield history
+ except RuntimeError as e:
+ if "generator raised StopIteration" in str(e):
+ # assume last entry was bad, undo
+ history.pop()
+ yield history
+ raise
+ except Exception as e:
+ # put error into user input
+ history[-1][0] = "Exception: %s" % str(e)
+ yield history
+ raise
+ return
+
+ # NORMAL MODEL
+ user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
+ inputs=inputs_list + [text_output],
+ outputs=text_output,
+ )
+ bot_args = dict(fn=bot,
+ inputs=inputs_list + [model_state] + [text_output],
+ outputs=text_output,
+ )
+ retry_bot_args = dict(fn=functools.partial(bot, retry=True),
+ inputs=inputs_list + [model_state] + [text_output],
+ outputs=text_output,
+ )
+ undo_user_args = dict(fn=functools.partial(user, undo=True),
+ inputs=inputs_list + [text_output],
+ outputs=text_output,
+ )
+
+ # MODEL2
+ user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
+ inputs=inputs_list + [text_output2],
+ outputs=text_output2,
+ )
+ bot_args2 = dict(fn=bot,
+ inputs=inputs_list + [model_state2] + [text_output2],
+ outputs=text_output2,
+ )
+ retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
+ inputs=inputs_list + [model_state2] + [text_output2],
+ outputs=text_output2,
+ )
+ undo_user_args2 = dict(fn=functools.partial(user, undo=True),
+ inputs=inputs_list + [text_output2],
+ outputs=text_output2,
+ )
+
+ def clear_instruct():
+ return gr.Textbox.update(value='')
+
+ if kwargs['auto_score']:
+ # in case 2nd model, consume instruction first, so can clear quickly
+ # bot doesn't consume instruction itself, just history from user, so why works
+ submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
+ .then(**user_args2, queue=stream_output, api_name='instruction2') \
+ .then(clear_instruct, None, instruction) \
+ .then(**bot_args, api_name='instruction_bot') \
+ .then(**score_args, api_name='instruction_bot_score') \
+ .then(**bot_args2, api_name='instruction_bot2') \
+ .then(**score_args2, api_name='instruction_bot_score2') \
+ .then(clear_torch_cache)
+ submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
+ .then(**user_args2, queue=stream_output, api_name='submit2') \
+ .then(**bot_args, api_name='submit_bot') \
+ .then(clear_instruct, None, instruction) \
+ .then(**score_args, api_name='submit_bot_score') \
+ .then(**bot_args2, api_name='submit_bot2') \
+ .then(**score_args2, api_name='submit_bot_score2') \
+ .then(clear_torch_cache)
+ submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
+ .then(**user_args2, queue=stream_output, api_name='retry2') \
+ .then(clear_instruct, None, instruction) \
+ .then(**retry_bot_args, api_name='retry_bot') \
+ .then(**score_args, api_name='retry_bot_score') \
+ .then(**retry_bot_args2, api_name='retry_bot2') \
+ .then(**score_args2, api_name='retry_bot_score2') \
+ .then(clear_torch_cache)
+ submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
+ .then(**score_args, api_name='undo_score') \
+ .then(**undo_user_args2, queue=stream_output, api_name='undo2') \
+ .then(**score_args2, api_name='undo_score2') \
+ .then(clear_instruct, None, instruction)
+ else:
+ submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
+ .then(**user_args2, queue=stream_output, api_name='instruction2') \
+ .then(clear_instruct, None, instruction) \
+ .then(**bot_args, api_name='instruction_bot') \
+ .then(**bot_args2, api_name='instruction_bot2') \
+ .then(clear_torch_cache)
+ submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
+ .then(**user_args2, queue=stream_output, api_name='submit2') \
+ .then(clear_instruct, None, instruction) \
+ .then(**bot_args, api_name='submit_bot') \
+ .then(**bot_args2, api_name='submit_bot2') \
+ .then(clear_torch_cache)
+ submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
+ .then(**user_args2, queue=stream_output, api_name='retry2') \
+ .then(clear_instruct, None, instruction) \
+ .then(**retry_bot_args, api_name='retry_bot') \
+ .then(**retry_bot_args2, api_name='retry_bot2') \
+ .then(clear_torch_cache)
+ submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
+ .then(**undo_user_args2, queue=stream_output, api_name='undo2')
+
+ # does both models
+ clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \
+ .then(lambda: None, None, text_output2, queue=False, api_name='clear2')
+ # FIXME: compare
+ submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
+ outputs=text_output_nochat, api_name='submit_nochat') \
+ .then(**score_args_nochat, api_name='instruction_bot_score_nochat') \
+ .then(clear_torch_cache)
+
+ def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
+ # ensure old model removed from GPU memory
+ if kwargs['debug']:
+ print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
+
+ if isinstance(model_state_old[0], str) and model0 is not None:
+ # best can do, move model loaded at first to CPU
+ model0.cpu()
+
+ if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
+ try:
+ model_state_old[0].cpu()
+ except Exception as e:
+ # sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
+ print("Unable to put model on CPU: %s" % str(e), flush=True)
+ del model_state_old[0]
+ model_state_old[0] = None
+
+ if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
+ del model_state_old[1]
+ model_state_old[1] = None
+
+ clear_torch_cache()
+ if kwargs['debug']:
+ print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
+
+ if model_name is None or model_name == no_model_str:
+ # no-op if no model, just free memory
+ # no detranscribe needed for model, never go into evaluate
+ lora_weights = no_lora_str
+ return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
+
+ all_kwargs1 = all_kwargs.copy()
+ all_kwargs1['base_model'] = model_name.strip()
+ all_kwargs1['load_8bit'] = load_8bit
+ all_kwargs1['infer_devices'] = infer_devices
+ all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
+ model_lower = model_name.strip().lower()
+ if model_lower in inv_prompt_type_to_model_lower:
+ prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
+ else:
+ prompt_type1 = prompt_type_old
+
+ # detranscribe
+ if lora_weights == no_lora_str:
+ lora_weights = ''
+
+ all_kwargs1['lora_weights'] = lora_weights.strip()
+ model1, tokenizer1, device1 = get_model(**all_kwargs1)
+ clear_torch_cache()
+
+ if kwargs['debug']:
+ print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
+ return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1
+
+ def dropdown_prompt_type_list(x):
+ return gr.Dropdown.update(value=x)
+
+ def chatbot_list(x, model_used_in):
+ return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
+
+ load_model_args = dict(fn=load_model,
+ inputs=[model_choice, lora_choice, model_state, prompt_type,
+ model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
+ outputs=[model_state, model_used, lora_used, prompt_type])
+ prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
+ chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
+ nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat)
+ if not is_public:
+ load_model_event = load_model_button.click(**load_model_args) \
+ .then(**prompt_update_args) \
+ .then(**chatbot_update_args) \
+ .then(**nochat_update_args) \
+ .then(clear_torch_cache)
+
+ load_model_args2 = dict(fn=load_model,
+ inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
+ model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
+ outputs=[model_state2, model_used2, lora_used2, prompt_type2])
+ prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
+ chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
+ if not is_public:
+ load_model_event2 = load_model_button2.click(**load_model_args2) \
+ .then(**prompt_update_args2) \
+ .then(**chatbot_update_args2) \
+ .then(clear_torch_cache)
+
+ def dropdown_model_list(list0, x):
+ new_state = [list0[0] + [x]]
+ new_options = [*new_state[0]]
+ return gr.Dropdown.update(value=x, choices=new_options), \
+ gr.Dropdown.update(value=x, choices=new_options), \
+ '', new_state
+
+ add_model_event = add_model_button.click(fn=dropdown_model_list,
+ inputs=[model_options_state, new_model],
+ outputs=[model_choice, model_choice2, new_model, model_options_state])
+
+ def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
+ new_state = [list0[0] + [x]]
+ new_options = [*new_state[0]]
+ # don't switch drop-down to added lora if already have model loaded
+ x1 = x if model_used1 == no_model_str else lora_used1
+ x2 = x if model_used2 == no_model_str else lora_used2
+ return gr.Dropdown.update(value=x1, choices=new_options), \
+ gr.Dropdown.update(value=x2, choices=new_options), \
+ '', new_state
+
+ add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
+ inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
+ outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
+
+ go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \
+ .then(lambda: gr.update(visible=True), None, normal_block) \
+ .then(**load_model_args).then(**prompt_update_args)
+
+ def compare_textbox_fun(x):
+ return gr.Textbox.update(visible=x)
+
+ def compare_column_fun(x):
+ return gr.Column.update(visible=x)
+
+ def compare_prompt_fun(x):
+ return gr.Dropdown.update(visible=x)
+
+ compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \
+ .then(compare_column_fun, compare_checkbox, col_model2) \
+ .then(compare_prompt_fun, compare_checkbox, prompt_type2) \
+ .then(compare_textbox_fun, compare_checkbox, score_text2)
+ # FIXME: add score_res2 in condition, but do better
+
+ # callback for logging flagged input/output
+ callback.setup(inputs_list + [text_output], "flagged_data_points")
+ flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
+ api_name='flag')
+ flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
+ api_name='flag_nochat')
+
+ def get_system_info():
+ return gr.Textbox.update(value=system_info_print())
+
+ system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info')
+
+ # don't pass text_output, don't want to clear output, just stop it
+ # FIXME: have to click once to stop output and second time to stop GPUs going
+ stop_btn.click(lambda: None, None, None,
+ cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
+ queue=False, api_name='stop').then(clear_torch_cache)
+ demo.load(None,None,None, _js=dark_js)
+
+ demo.queue(concurrency_count=1)
+ favicon_path = "h2o-logo.svg"
+ demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
+ favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
+ print("Started GUI", flush=True)
+ if kwargs['block_gradio_exit']:
+ demo.block_thread()
+
+
+input_args_list = ['model_state']
+inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0']
+
+
+def get_inputs_list(inputs_dict, model_lower):
+ """
+ map gradio objects in locals() to inputs for evaluate().
+ :param inputs_dict:
+ :param model_lower:
+ :return:
+ """
+ inputs_list_names = list(inspect.signature(evaluate).parameters)
+ inputs_list = []
+ for k in inputs_list_names:
+ if k == 'kwargs':
+ continue
+ if k in input_args_list + inputs_kwargs_list:
+ # these are added via partial, not taken as input
+ continue
+ if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
+ continue
+ inputs_list.append(inputs_dict[k])
+ return inputs_list
+
+
+eval_func_param_names = ['instruction',
+ 'iinput',
+ 'context',
+ 'stream_output',
+ 'prompt_type',
+ 'temperature',
+ 'top_p',
+ 'top_k',
+ 'num_beams',
+ 'max_new_tokens',
+ 'min_new_tokens',
+ 'early_stopping',
+ 'max_time',
+ 'repetition_penalty',
+ 'num_return_sequences',
+ 'do_sample',
+ 'chat',
+ 'instruction_nochat',
+ 'iinput_nochat',
+ ]
+
+
+def evaluate(
+ model_state,
+ # START NOTE: Examples must have same order of parameters
+ instruction,
+ iinput,
+ context,
+ stream_output,
+ prompt_type,
+ temperature,
+ top_p,
+ top_k,
+ num_beams,
+ max_new_tokens,
+ min_new_tokens,
+ early_stopping,
+ max_time,
+ repetition_penalty,
+ num_return_sequences,
+ do_sample,
+ chat,
+ instruction_nochat,
+ iinput_nochat,
+ # END NOTE: Examples must have same order of parameters
+ src_lang=None,
+ tgt_lang=None,
+ debug=False,
+ save_dir=None,
+ hard_stop_list=None,
+ sanitize_bot_response=True,
+ model_state0=None,
+ **kwargs,
+):
+ if debug:
+ locals_dict = locals().copy()
+ locals_dict.pop('model_state', None)
+ locals_dict.pop('model_state0', None)
+ print(locals_dict)
+
+ no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation"
+
+ if model_state0 is None:
+ # e.g. for no gradio case, set dummy value, else should be set
+ model_state0 = [None, None, None, None]
+
+ if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str):
+ # try to free-up original model (i.e. list was passed as reference)
+ if model_state0 is not None and model_state0[0] is not None:
+ model_state0[0].cpu()
+ model_state0[0] = None
+ # try to free-up original tokenizer (i.e. list was passed as reference)
+ if model_state0 is not None and model_state0[1] is not None:
+ model_state0[1] = None
+ clear_torch_cache()
+ model, tokenizer, device, base_model = model_state
+ elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None:
+ assert isinstance(model_state[0], str)
+ model, tokenizer, device, base_model = model_state0
+ else:
+ raise AssertionError(no_model_msg)
+
+ if base_model is None:
+ raise AssertionError(no_model_msg)
+
+ assert base_model.strip(), no_model_msg
+ assert model, "Model is missing"
+ assert tokenizer, "Tokenizer is missing"
+
+ # choose chat or non-chat mode
+ if not chat:
+ instruction = instruction_nochat
+ iinput = iinput_nochat
+
+ data_point = dict(context=context, instruction=instruction, input=iinput)
+ prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
+ prompt = prompter.generate_prompt(data_point)
+
+ if hard_stop_list is None:
+ # acts like undo on user entry and bot response
+ hard_stop_list = []
+
+ if isinstance(tokenizer, str):
+ # pipeline
+ if tokenizer == "summarization":
+ key = 'summary_text'
+ else:
+ raise RuntimeError("No such task type %s" % tokenizer)
+ # NOTE: uses max_length only
+ yield model(prompt, max_length=max_new_tokens)[0][key]
+
+ if 'mbart-' in base_model.lower():
+ assert src_lang is not None
+ tokenizer.src_lang = languages_covered()[src_lang]
+
+ if chat:
+ # override, ignore user change
+ num_return_sequences = 1
+ if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']:
+ if prompt_type == 'human_bot':
+ # encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
+ # stopping only starts once output is beyond prompt
+ # 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
+ stop_words = [human, bot, '\n' + human, '\n' + bot]
+ encounters = [1, 2]
+ elif prompt_type == 'instruct_vicuna':
+ # even below is not enough, generic strings and many ways to encode
+ stop_words = [
+ '### Human:',
+ """
+### Human:""",
+ """
+### Human:
+""",
+ '### Assistant:',
+ """
+### Assistant:""",
+ """
+### Assistant:
+""",
+ ]
+ encounters = [1, 2]
+ else:
+ # some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
+ stop_words = ['### End']
+ encounters = [1]
+ stop_words_ids = [
+ tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
+ # handle single token case
+ stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
+ stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
+ # avoid padding in front of tokens
+ if tokenizer.pad_token:
+ stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
+ # handle fake \n added
+ stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
+ # build stopper
+ stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)])
+ else:
+ stopping_criteria = StoppingCriteriaList()
+
+ # help to avoid errors like:
+ # RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3
+ # RuntimeError: expected scalar type Half but found Float
+ # with - 256
+ max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256
+ cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens
+ output_smallest = 30 * 4
+ prompt = prompt[-cutoff_len - output_smallest:]
+ inputs = tokenizer(prompt,
+ return_tensors="pt",
+ truncation=True,
+ max_length=max_length_tokenize)
+ if debug and len(inputs["input_ids"]) > 0:
+ print('input_ids length', len(inputs["input_ids"][0]), flush=True)
+ input_ids = inputs["input_ids"].to(device)
+ generation_config = GenerationConfig(
+ temperature=float(temperature),
+ top_p=float(top_p),
+ top_k=top_k,
+ num_beams=num_beams,
+ do_sample=do_sample,
+ repetition_penalty=float(repetition_penalty),
+ num_return_sequences=num_return_sequences,
+ renormalize_logits=True,
+ remove_invalid_values=True,
+ **kwargs,
+ )
+
+ gen_kwargs = dict(input_ids=input_ids,
+ generation_config=generation_config,
+ return_dict_in_generate=True,
+ output_scores=True,
+ max_new_tokens=max_new_tokens, # prompt + new
+ min_new_tokens=min_new_tokens, # prompt + new
+ early_stopping=early_stopping, # False, True, "never"
+ max_time=max_time,
+ stopping_criteria=stopping_criteria,
+ )
+ if 'gpt2' in base_model.lower():
+ gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id))
+ elif 'mbart-' in base_model.lower():
+ assert tgt_lang is not None
+ tgt_lang = languages_covered()[tgt_lang]
+ gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]))
+ else:
+ gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id))
+
+ decoder = functools.partial(tokenizer.decode,
+ skip_special_tokens=True,
+ clean_up_tokenization_spaces=True,
+ )
+ decoder_raw = functools.partial(tokenizer.decode,
+ skip_special_tokens=False,
+ clean_up_tokenization_spaces=True,
+ )
+
+ with torch.no_grad():
+ # decoded tokenized prompt can deviate from prompt due to special characters
+ inputs_decoded = decoder(input_ids[0])
+ inputs_decoded_raw = decoder_raw(input_ids[0])
+ if inputs_decoded == prompt:
+ # normal
+ pass
+ elif inputs_decoded.lstrip() == prompt.lstrip():
+ # sometimes extra space in front, make prompt same for prompt removal
+ prompt = inputs_decoded
+ elif inputs_decoded_raw == prompt:
+ # some models specify special tokens that are part of normal prompt, so can't skip them
+ inputs_decoded_raw = inputs_decoded
+ decoder = decoder_raw
+ else:
+ print("WARNING: Special characters in prompt", flush=True)
+ if stream_output:
+ def generate(callback=None, **kwargs):
+ # re-order stopping so Stream first and get out all chunks before stop for other reasons
+ stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy()
+ kwargs['stopping_criteria'] = StoppingCriteriaList()
+ kwargs['stopping_criteria'].append(Stream(func=callback))
+ for stopping_criteria1 in stopping_criteria0:
+ kwargs['stopping_criteria'].append(stopping_criteria1)
+
+ try:
+ model.generate(**kwargs)
+ except torch.cuda.OutOfMemoryError as e:
+ print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
+ flush=True)
+ if kwargs['input_ids'] is not None:
+ kwargs['input_ids'].cpu()
+ kwargs['input_ids'] = None
+ traceback.print_exc()
+ clear_torch_cache()
+ return
+ except (Exception, RuntimeError) as e:
+ if 'Expected all tensors to be on the same device' in str(e) or \
+ 'expected scalar type Half but found Float' in str(e) or \
+ 'probability tensor contains either' in str(e) or \
+ 'cublasLt ran into an error!' in str(e):
+ print(
+ "GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
+ flush=True)
+ traceback.print_exc()
+ clear_torch_cache()
+ if raise_generate_gpu_exceptions:
+ raise
+ return
+ else:
+ raise
+
+ decoded_output = None
+ for output in CallbackToGenerator(generate, callback=None, **gen_kwargs):
+ decoded_output = decoder(output)
+ if output[-1] in [tokenizer.eos_token_id]:
+ if debug:
+ print("HIT EOS", flush=True)
+ break
+ if any(ele in decoded_output for ele in hard_stop_list):
+ raise StopIteration
+ yield prompter.get_response(decoded_output, prompt=inputs_decoded,
+ sanitize_bot_response=sanitize_bot_response)
+ if save_dir and decoded_output:
+ save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
+ else:
+ outputs = model.generate(**gen_kwargs)
+ outputs = [decoder(s) for s in outputs.sequences]
+ yield prompter.get_response(outputs, prompt=inputs_decoded,
+ sanitize_bot_response=sanitize_bot_response)
+ if save_dir and outputs and len(outputs) >= 1:
+ decoded_output = prompt + outputs[0]
+ save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
+
+
+def get_generate_params(model_lower, chat,
+ stream_output, show_examples,
+ prompt_type, temperature, top_p, top_k, num_beams,
+ max_new_tokens, min_new_tokens, early_stopping, max_time,
+ repetition_penalty, num_return_sequences,
+ do_sample):
+ use_defaults = False
+ use_default_examples = True
+ examples = []
+ task_info = f"{prompt_type}"
+ if model_lower:
+ print(f"Using Model {model_lower}", flush=True)
+ else:
+ print("No model defined yet", flush=True)
+
+ min_new_tokens = min_new_tokens if min_new_tokens is not None else 0
+ early_stopping = early_stopping if early_stopping is not None else False
+ max_time_defaults = 60 * 3
+ max_time = max_time if max_time is not None else max_time_defaults
+
+ if not prompt_type and model_lower in inv_prompt_type_to_model_lower:
+ prompt_type = inv_prompt_type_to_model_lower[model_lower]
+
+ # examples at first don't include chat, instruction_nochat, iinput_nochat, added at end
+ if show_examples is None:
+ if chat:
+ show_examples = False
+ else:
+ show_examples = True
+
+ summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker?
+Philipp: Sure you can use the new Hugging Face Deep Learning Container.
+Jeff: ok.
+Jeff: and how can I get started?
+Jeff: where can I find documentation?
+Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"""
+
+ if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower:
+ placeholder_instruction = summarize_example1
+ placeholder_input = ""
+ use_defaults = True
+ use_default_examples = False
+ examples += [
+ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
+ 1.0, 1,
+ False]]
+ task_info = "Summarization"
+ elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower:
+ placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
+ placeholder_input = ""
+ use_defaults = True
+ use_default_examples = True
+ task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)"
+ elif 'mbart-' in model_lower:
+ placeholder_instruction = "The girl has long hair."
+ placeholder_input = ""
+ use_defaults = True
+ use_default_examples = False
+ examples += [
+ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
+ 1.0, 1,
+ False]]
+ elif 'gpt2' in model_lower:
+ placeholder_instruction = "The sky is"
+ placeholder_input = ""
+ prompt_type = prompt_type or 'plain'
+ use_default_examples = True # some will be odd "continuations" but can be ok
+ examples += [
+ [placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
+ 1.0, 1,
+ False]]
+ task_info = "Auto-complete phrase, code, etc."
+ use_defaults = True
+ else:
+ if chat:
+ placeholder_instruction = "Enter a question or imperative."
+ else:
+ placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter."
+ placeholder_input = ""
+ if model_lower:
+ prompt_type = prompt_type or 'human_bot'
+ else:
+ prompt_type = ''
+ examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "",
+ stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1,
+ False]]
+ task_info = "No task"
+ if prompt_type == 'instruct':
+ task_info = "Answer question or follow imperative as instruction with optionally input."
+ elif prompt_type == 'plain':
+ task_info = "Auto-complete phrase, code, etc."
+ elif prompt_type == 'human_bot':
+ if chat:
+ task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)"
+ else:
+ task_info = "Ask question/imperative (input concatenated with instruction)"
+
+ # revert to plain if still nothing
+ prompt_type = prompt_type or 'plain'
+ if use_defaults:
+ temperature = 1.0 if temperature is None else temperature
+ top_p = 1.0 if top_p is None else top_p
+ top_k = 40 if top_k is None else top_k
+ num_beams = num_beams or 1
+ max_new_tokens = max_new_tokens or 128
+ repetition_penalty = repetition_penalty or 1.07
+ num_return_sequences = min(num_beams, num_return_sequences or 1)
+ do_sample = False if do_sample is None else do_sample
+ else:
+ temperature = 0.1 if temperature is None else temperature
+ top_p = 0.75 if top_p is None else top_p
+ top_k = 40 if top_k is None else top_k
+ if chat:
+ num_beams = num_beams or 1
+ else:
+ num_beams = num_beams or 4
+ max_new_tokens = max_new_tokens or 256
+ repetition_penalty = repetition_penalty or 1.07
+ num_return_sequences = min(num_beams, num_return_sequences or 1)
+ do_sample = False if do_sample is None else do_sample
+ # doesn't include chat, instruction_nochat, iinput_nochat, added later
+ params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
+ early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
+
+ if use_default_examples:
+ examples += [
+ ["Translate English to French", "Good morning"] + params_list,
+ ["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list,
+ ["Explain in detailed list, all the best practices for coding in python.", ''] + params_list,
+ [
+ "Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.",
+ ''] + params_list,
+ ['Translate to German: My name is Arthur', ''] + params_list,
+ ["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list,
+ ['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.',
+ ''] + params_list,
+ ['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list,
+ ['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list,
+ ["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list,
+ [
+ "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?",
+ ''] + params_list,
+ ['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list,
+ [
+ 'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',
+ ''] + params_list,
+ ["""def area_of_rectangle(a: float, b: float):
+ \"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list,
+ ["""# a function in native python:
+def mean(a):
+ return sum(a)/len(a)
+
+# the same function using numpy:
+import numpy as np
+def mean(a):""", ''] + params_list,
+ ["""X = np.random.randn(100, 100)
+y = np.random.randint(0, 1, 100)
+
+# fit random forest classifier with 20 estimators""", ''] + params_list,
+ ]
+
+ src_lang = "English"
+ tgt_lang = "Russian"
+
+ # move to correct position
+ for example in examples:
+ example += [chat, '', '']
+ # adjust examples if non-chat mode
+ if not chat:
+ example[eval_func_param_names.index('instruction_nochat')] = example[
+ eval_func_param_names.index('instruction')]
+ example[eval_func_param_names.index('instruction')] = ''
+
+ example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')]
+ example[eval_func_param_names.index('iinput')] = ''
+
+ return placeholder_instruction, placeholder_input, \
+ stream_output, show_examples, \
+ prompt_type, temperature, top_p, top_k, num_beams, \
+ max_new_tokens, min_new_tokens, early_stopping, max_time, \
+ repetition_penalty, num_return_sequences, \
+ do_sample, \
+ src_lang, tgt_lang, \
+ examples, \
+ task_info
+
+
+def languages_covered():
+ # https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered
+ covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)"""
+ covered = covered.split(', ')
+ covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered}
+ return covered
+
+
+def test_test_prompt(prompt_type='instruct', data_point=0):
+ example_data_point = example_data_points[data_point]
+ example_data_point.pop('output', None)
+ return generate_prompt(example_data_point, prompt_type, False, False)
+
+
+if __name__ == "__main__":
+ print("""
+ WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
+ python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
+ python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
+
+ # generate without lora weights, no prompt
+ python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain'
+ python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq'
+
+ python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq'
+ # OpenChatKit settings:
+ python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0
+
+ python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False
+ python generate.py --base_model='t5-large' --prompt_type='simple_instruct'
+ python generate.py --base_model='philschmid/bart-large-cnn-samsum'
+ python generate.py --base_model='philschmid/flan-t5-base-samsum'
+ python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt'
+
+ python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28'
+
+ must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False
+ can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned
+ python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
+
+ python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
+
+ """, flush=True)
+ fire.Fire(main)