tree3po commited on
Commit
10cd0ae
·
verified ·
1 Parent(s): e4dfe6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -20
app.py CHANGED
@@ -14,26 +14,11 @@ ltr=["n","s","m","1","x"]
14
  tsk=["","-seg","-pose","-obb","-cls"]
15
  #yolov8s.pt
16
  modin=f"yolov{ver[9]}{ltr[1]}{tsk[0]}.pt"
17
-
18
- print(modin)
19
  model = YOLO(modin)
20
-
21
- def draw_box(image,det):
22
- height, width, channels = image.shape
23
- for i,ea in enumerate(det.xyxy):
24
- #bbox = convert_coords(ea, width, height)
25
- #print(bbox)
26
- start_point = ((int(ea[0]),int(ea[1])))
27
- end_point = ((int(ea[2]),int(ea[3])))
28
- label = f'{det.data["class_name"][i]}'
29
- font = cv2.FONT_HERSHEY_COMPLEX # Choose a font
30
- font_scale = 1
31
- color = (0, 0, 255) # Blue color
32
- thickness = 1
33
- text_position = (int(ea[0]), int(ea[1]) + 10) # Adjust position as needed
34
- image = cv2.rectangle(image, start_point, end_point, color, thickness)
35
- cv2.putText(image, label, text_position, font, font_scale, color, thickness)
36
- return image
37
 
38
  @spaces.GPU
39
  def stream_object_detection(video):
@@ -57,7 +42,8 @@ def stream_object_detection(video):
57
  detections = sv.Detections.from_ultralytics(result)
58
  print(detections)
59
 
60
- box_annotator = sv.BoxAnnotator()
 
61
  outp = box_annotator.annotate(
62
  scene=frame.copy(),
63
  detections=detections)
 
14
  tsk=["","-seg","-pose","-obb","-cls"]
15
  #yolov8s.pt
16
  modin=f"yolov{ver[9]}{ltr[1]}{tsk[0]}.pt"
 
 
17
  model = YOLO(modin)
18
+ annotators = ["Box","RoundBox","BoxCorner","Color",
19
+ "Circle","Dot","Triangle","Elipse","Halo",
20
+ "PercentageBar","Mask","Polygon","Label",
21
+ "RichLabel","Icon","Crop","Blur","Pixelate","HeatMap"]
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  @spaces.GPU
24
  def stream_object_detection(video):
 
42
  detections = sv.Detections.from_ultralytics(result)
43
  print(detections)
44
 
45
+ box_annotator = eval(f'sv.{annotators[11]}()')
46
+
47
  outp = box_annotator.annotate(
48
  scene=frame.copy(),
49
  detections=detections)