File size: 7,607 Bytes
e0f25ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import copy
import datetime
import gzip
import json
import os
from hashlib import md5

import jax
import jax.numpy as jnp
import numpy as np
from numpy import isin
from kinetix.environment.ued.ued_state import UEDParams
from omegaconf import OmegaConf
from pandas import isna
from typing import List, Tuple
import wandb
from kinetix.environment.env_state import EnvParams, StaticEnvParams
from collections import defaultdict

from kinetix.util.saving import load_from_json_file


def get_hash_without_seed(config):
    old_seed = config["seed"]
    config["seed"] = 0
    ans = md5(OmegaConf.to_yaml(config, sort_keys=True).encode()).hexdigest()
    config["seed"] = old_seed
    return ans


def get_date() -> str:
    return datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")


def generate_params_from_config(config):
    if config.get("env_size_type", "predefined") == "custom":
        # must load env params from a file
        _, static_env_params, env_params = load_from_json_file(os.path.join("worlds", config["custom_path"]))
        return env_params, static_env_params.replace(
            frame_skip=config["frame_skip"],
        )
    env_params = EnvParams()

    static_env_params = StaticEnvParams().replace(
        num_polygons=config["num_polygons"],
        num_circles=config["num_circles"],
        num_joints=config["num_joints"],
        num_thrusters=config["num_thrusters"],
        frame_skip=config["frame_skip"],
        num_motor_bindings=config["num_motor_bindings"],
        num_thruster_bindings=config["num_thruster_bindings"],
    )

    return env_params, static_env_params


def generate_ued_params_from_config(config) -> UEDParams:
    ans = UEDParams()

    if config["env_size_name"] == "s":
        ans = ans.replace(add_shape_n_proposals=1)  # otherwise we get a very weird XLA bug.
    if "fixate_chance_max" in config:
        print("Changing fixate chance max to", config["fixate_chance_max"])
        ans = ans.replace(fixate_chance_max=config["fixate_chance_max"])
    return ans


def get_eval_level_groups(eval_levels: List[str]) -> List[Tuple[str, str]]:
    def get_groups(s):
        # This is the size group
        group_one = s.split("/")[0]
        group_two = s.split("/")[1].split("_")[0]
        group_two = "".join([i for i in group_two if not i.isdigit()])
        if group_two == "h":
            group_two = "handmade"
        if group_two == "r":
            group_two = "random"
        return f"{group_one}_all", f"{group_one}_{group_two}"

    indices = defaultdict(list)

    for idx, s in enumerate(eval_levels):
        groups = get_groups(s)
        for group in groups:
            indices[group].append(idx)

    indices2 = {}
    for g in indices:
        indices2[g] = np.array(indices[g])

    return indices2


def normalise_config(config, name, editor_config=False):
    old_config = copy.deepcopy(config)
    keys = ["env", "learning", "model", "misc", "eval", "ued", "env_size", "train_levels"]
    for k in keys:
        if k not in config:
            config[k] = {}
        small_d = config[k]
        del config[k]
        for kk, vv in small_d.items():
            assert kk not in config, kk
            config[kk] = vv

    if not editor_config:
        config["eval_env_size_true"] = config["eval_env_size"]
        if config["num_train_envs"] == 2048 and "Pixels" in config["env_name"]:
            config["num_train_envs"] = 512
        if "SFL" in name and config["env_size_name"] in ["m", "l"]:
            config["eval_num_attempts"] = 6  # to avoid a very weird XLA bug.
        config["hash"] = get_hash_without_seed(config)

        config["random_hash"] = np.random.randint(2**31)

        config["log_save_path"] = f"logs/{config['hash']}/{config['seed']}-{get_date()}"
        os.makedirs(config["log_save_path"], exist_ok=True)
        with open(f"{config['log_save_path']}/config.yaml", "w") as f:
            f.write(OmegaConf.to_yaml(old_config))
        if config["group"] == "auto":
            config["group"] = f"{name}-" + config["group_auto_prefix"] + config["env_name"].replace("Kinetix-", "")
            config["group"] += "-" + str(config["env_size_name"])

        if config["eval_levels"] == ["auto"] or config["eval_levels"] == "auto":
            config["eval_levels"] = config["train_levels_list"]
            print("Using Auto eval levels:", config["eval_levels"])
        config["num_eval_levels"] = len(config["eval_levels"])

        steps = (
            config["num_steps"]
            * config.get("outer_rollout_steps", 1)
            * config["num_train_envs"]
            * (2 if name == "PAIRED" else 1)
        )
        config["num_updates"] = int(config["total_timesteps"]) // steps

        nsteps = int(config["total_timesteps"] // 1e6)
        letter = "M"
        if nsteps >= 1000:
            nsteps = nsteps // 1000
            letter = "B"
        config["run_name"] = (
            config["env_name"] + f"-{name}-" + str(nsteps) + letter + "-" + str(config["num_train_envs"])
        )

        if config["checkpoint_save_freq"] >= config["num_updates"]:
            config["checkpoint_save_freq"] = config["num_updates"]
    return config


def get_tags(config, name):
    return [name]
    tags = [name]
    if name in ["PLR", "ACCEL", "DR"]:
        if config["use_accel"]:
            tags.append("ACCEL")
        else:
            tags.append("PLR")
    return tags


def init_wandb(config, name) -> wandb.run:
    run = wandb.init(
        config=config,
        project=config["wandb_project"],
        group=config["group"],
        name=config["run_name"],
        entity=config["wandb_entity"],
        mode=config["wandb_mode"],
        tags=get_tags(config, name),
    )
    wandb.define_metric("timing/num_updates")
    wandb.define_metric("timing/num_env_steps")
    wandb.define_metric("*", step_metric="timing/num_env_steps")
    wandb.define_metric("timing/sps", step_metric="timing/num_env_steps")
    return run


def save_data_to_local_file(data_to_save, config):
    if not config.get("save_local_data", False):
        return

    def reverse_in(li, value):
        for i, v in enumerate(li):
            if v in value:
                return True
        return False

    clean_data = {k: v for k, v in data_to_save.items() if not reverse_in(["media/", "images/"], k)}

    def _clean(x):
        if isinstance(x, jnp.ndarray):
            return x.tolist()
        elif isinstance(x, jnp.float32):
            if jnp.isnan(x):
                return -float("inf")
            return round(float(x) * 1000) / 1000
        elif isinstance(x, jnp.int32):
            return int(x)
        return x

    clean_data = jax.tree_map(lambda x: _clean(x), clean_data)
    print("Saving this data:", clean_data)
    with open(f"{config['log_save_path']}/data.jsonl", "a+") as f:
        f.write(json.dumps(clean_data) + "\n")


def compress_log_files_after_run(config):
    fpath = f"{config['log_save_path']}/data.jsonl"
    with open(fpath, "rb") as f_in, gzip.open(fpath + ".gz", "wb") as f_out:
        f_out.writelines(f_in)


def get_video_frequency(config, update_step):
    frac_through_training = update_step / config["num_updates"]
    vid_frequency = (
        config["eval_freq"]
        * config["video_frequency"]
        * jax.lax.select(
            (0.1 <= frac_through_training) & (frac_through_training < 0.3),
            1,
            jax.lax.select(
                (0.3 <= frac_through_training) & (frac_through_training < 0.6),
                2,
                4,
            ),
        )
    )
    return vid_frequency