File size: 48,332 Bytes
e0f25ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
from functools import partial
import time
from enum import IntEnum
from typing import Tuple

import chex
import hydra
import jax
import jax.numpy as jnp
import numpy as np
from omegaconf import OmegaConf
import optax
from flax import core, struct
from flax.training.train_state import TrainState as BaseTrainState

import wandb
from kinetix.environment.ued.distributions import (
    create_random_starting_distribution,
)
from kinetix.environment.ued.ued import (
    make_mutate_env,
    make_reset_train_function_with_mutations,
    make_vmapped_filtered_level_sampler,
)
from kinetix.environment.ued.ued import (
    make_mutate_env,
    make_reset_train_function_with_list_of_levels,
    make_reset_train_function_with_mutations,
)
from kinetix.util.config import (
    generate_ued_params_from_config,
    get_video_frequency,
    init_wandb,
    normalise_config,
    save_data_to_local_file,
    generate_params_from_config,
    get_eval_level_groups,
)
from jaxued.environments.underspecified_env import EnvState
from jaxued.level_sampler import LevelSampler
from jaxued.utils import compute_max_returns, max_mc, positive_value_loss
from flax.serialization import to_state_dict

import sys

sys.path.append("experiments")
from kinetix.environment.env import make_kinetix_env_from_name
from kinetix.environment.env_state import StaticEnvParams
from kinetix.environment.wrappers import (
    UnderspecifiedToGymnaxWrapper,
    LogWrapper,
    DenseRewardWrapper,
    AutoReplayWrapper,
)
from kinetix.models import make_network_from_config
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.models.actor_critic import ScannedRNN
from kinetix.util.learning import (
    general_eval,
    get_eval_levels,
    no_op_and_random_rollout,
    sample_trajectories_and_learn,
)
from kinetix.util.saving import (
    load_train_state_from_wandb_artifact_path,
    save_model_to_wandb,
)


class UpdateState(IntEnum):
    DR = 0
    REPLAY = 1
    MUTATE = 2


def get_level_complexity_metrics(all_levels: EnvState, static_env_params: StaticEnvParams):
    def get_for_single_level(level):
        return {
            "complexity/num_shapes": level.polygon.active[static_env_params.num_static_fixated_polys :].sum()
            + level.circle.active.sum(),
            "complexity/num_joints": level.joint.active.sum(),
            "complexity/num_thrusters": level.thruster.active.sum(),
            "complexity/num_rjoints": (level.joint.active * jnp.logical_not(level.joint.is_fixed_joint)).sum(),
            "complexity/num_fjoints": (level.joint.active * (level.joint.is_fixed_joint)).sum(),
            "complexity/has_ball": ((level.polygon_shape_roles == 1) * level.polygon.active).sum()
            + ((level.circle_shape_roles == 1) * level.circle.active).sum(),
            "complexity/has_goal": ((level.polygon_shape_roles == 2) * level.polygon.active).sum()
            + ((level.circle_shape_roles == 2) * level.circle.active).sum(),
        }

    return jax.tree.map(lambda x: x.mean(), jax.vmap(get_for_single_level)(all_levels))


def get_ued_score_metrics(all_ued_scores):
    (mc, pvl, learn) = all_ued_scores
    scores = {}
    for score, name in zip([mc, pvl, learn], ["MaxMC", "PVL", "Learnability"]):
        scores[f"ued_scores/{name}/Mean"] = score.mean()
        scores[f"ued_scores_additional/{name}/Max"] = score.max()
        scores[f"ued_scores_additional/{name}/Min"] = score.min()

    return scores


class TrainState(BaseTrainState):
    sampler: core.FrozenDict[str, chex.ArrayTree] = struct.field(pytree_node=True)
    update_state: UpdateState = struct.field(pytree_node=True)
    # === Below is used for logging ===
    num_dr_updates: int
    num_replay_updates: int
    num_mutation_updates: int

    dr_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)
    replay_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)
    mutation_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)

    dr_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)
    replay_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)
    mutation_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)

    dr_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)
    replay_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)
    mutation_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)


# region PPO helper functions

# endregion


def train_state_to_log_dict(train_state: TrainState, level_sampler: LevelSampler) -> dict:
    """To prevent the entire (large) train_state to be copied to the CPU when doing logging, this function returns all of the important information in a dictionary format.

        Anything in the `log` key will be logged to wandb.

    Args:
        train_state (TrainState):
        level_sampler (LevelSampler):

    Returns:
        dict:
    """
    sampler = train_state.sampler
    idx = jnp.arange(level_sampler.capacity) < sampler["size"]
    s = jnp.maximum(idx.sum(), 1)
    return {
        "log": {
            "level_sampler/size": sampler["size"],
            "level_sampler/episode_count": sampler["episode_count"],
            "level_sampler/max_score": sampler["scores"].max(),
            "level_sampler/weighted_score": (sampler["scores"] * level_sampler.level_weights(sampler)).sum(),
            "level_sampler/mean_score": (sampler["scores"] * idx).sum() / s,
        },
        "info": {
            "num_dr_updates": train_state.num_dr_updates,
            "num_replay_updates": train_state.num_replay_updates,
            "num_mutation_updates": train_state.num_mutation_updates,
        },
    }


def compute_learnability(config, done, reward, info, num_envs):
    num_agents = 1
    BATCH_ACTORS = num_envs * num_agents

    rollout_length = config["num_steps"] * config["outer_rollout_steps"]

    @partial(jax.vmap, in_axes=(None, 1, 1, 1))
    @partial(jax.jit, static_argnums=(0,))
    def _calc_outcomes_by_agent(max_steps: int, dones, returns, info):
        idxs = jnp.arange(max_steps)

        @partial(jax.vmap, in_axes=(0, 0))
        def __ep_outcomes(start_idx, end_idx):
            mask = (idxs > start_idx) & (idxs <= end_idx) & (end_idx != max_steps)
            r = jnp.sum(returns * mask)
            goal_r = info["GoalR"]
            success = jnp.sum(goal_r * mask)
            collision = 0
            timeo = 0
            l = end_idx - start_idx
            return r, success, collision, timeo, l

        done_idxs = jnp.argwhere(dones, size=50, fill_value=max_steps).squeeze()
        mask_done = jnp.where(done_idxs == max_steps, 0, 1)
        ep_return, success, collision, timeo, length = __ep_outcomes(
            jnp.concatenate([jnp.array([-1]), done_idxs[:-1]]), done_idxs
        )

        return {
            "ep_return": ep_return.mean(where=mask_done),
            "num_episodes": mask_done.sum(),
            "num_success": success.sum(where=mask_done),
            "success_rate": success.mean(where=mask_done),
            "collision_rate": collision.mean(where=mask_done),
            "timeout_rate": timeo.mean(where=mask_done),
            "ep_len": length.mean(where=mask_done),
        }

    done_by_env = done.reshape((-1, num_agents, num_envs))
    reward_by_env = reward.reshape((-1, num_agents, num_envs))
    o = _calc_outcomes_by_agent(rollout_length, done, reward, info)
    success_by_env = o["success_rate"].reshape((num_agents, num_envs))
    learnability_by_env = (success_by_env * (1 - success_by_env)).sum(axis=0)

    return (
        learnability_by_env,
        o["num_episodes"].reshape(num_agents, num_envs).sum(axis=0),
        o["num_success"].reshape(num_agents, num_envs).T,
    )  # so agents is at the end.


def compute_score(
    config: dict, dones: chex.Array, values: chex.Array, max_returns: chex.Array, reward, info, advantages: chex.Array
) -> chex.Array:
    # Computes the score for each level
    if config["score_function"] == "MaxMC":
        return max_mc(dones, values, max_returns)
    elif config["score_function"] == "pvl":
        return positive_value_loss(dones, advantages)
    elif config["score_function"] == "learnability":
        learnability, num_episodes, num_success = compute_learnability(
            config, dones, reward, info, config["num_train_envs"]
        )
        return learnability
    else:
        raise ValueError(f"Unknown score function: {config['score_function']}")


def compute_all_scores(
    config: dict,
    dones: chex.Array,
    values: chex.Array,
    max_returns: chex.Array,
    reward,
    info,
    advantages: chex.Array,
    return_success_rate=False,
):
    mc = max_mc(dones, values, max_returns)
    pvl = positive_value_loss(dones, advantages)
    learnability, num_episodes, num_success = compute_learnability(
        config, dones, reward, info, config["num_train_envs"]
    )
    if config["score_function"] == "MaxMC":
        main_score = mc
    elif config["score_function"] == "pvl":
        main_score = pvl
    elif config["score_function"] == "learnability":
        main_score = learnability
    else:
        raise ValueError(f"Unknown score function: {config['score_function']}")
    if return_success_rate:
        success_rate = num_success.squeeze(1) / jnp.maximum(num_episodes, 1)
        return main_score, (mc, pvl, learnability, success_rate)
    return main_score, (mc, pvl, learnability)


@hydra.main(version_base=None, config_path="../configs", config_name="plr")
def main(config=None):
    my_name = "PLR"
    config = OmegaConf.to_container(config)
    if config["ued"]["replay_prob"] == 0.0:
        my_name = "DR"
    elif config["ued"]["use_accel"]:
        my_name = "ACCEL"

    time_start = time.time()
    config = normalise_config(config, my_name)
    env_params, static_env_params = generate_params_from_config(config)
    config["env_params"] = to_state_dict(env_params)
    config["static_env_params"] = to_state_dict(static_env_params)

    run = init_wandb(config, my_name)
    config = wandb.config
    time_prev = time.time()

    def log_eval(stats, train_state_info):
        nonlocal time_prev
        print(f"Logging update: {stats['update_count']}")
        total_loss = jnp.mean(stats["losses"][0])
        if jnp.isnan(total_loss):
            print("NaN loss, skipping logging")
            raise ValueError("NaN loss")

        # generic stats
        env_steps = int(
            int(stats["update_count"]) * config["num_train_envs"] * config["num_steps"] * config["outer_rollout_steps"]
        )
        env_steps_delta = (
            config["eval_freq"] * config["num_train_envs"] * config["num_steps"] * config["outer_rollout_steps"]
        )
        time_now = time.time()
        log_dict = {
            "timing/num_updates": stats["update_count"],
            "timing/num_env_steps": env_steps,
            "timing/sps": env_steps_delta / (time_now - time_prev),
            "timing/sps_agg": env_steps / (time_now - time_start),
            "loss/total_loss": jnp.mean(stats["losses"][0]),
            "loss/value_loss": jnp.mean(stats["losses"][1][0]),
            "loss/policy_loss": jnp.mean(stats["losses"][1][1]),
            "loss/entropy_loss": jnp.mean(stats["losses"][1][2]),
        }
        time_prev = time_now

        # evaluation performance

        returns = stats["eval_returns"]
        log_dict.update({"eval/mean_eval_return": returns.mean()})
        log_dict.update({"eval/mean_eval_learnability": stats["eval_learn"].mean()})
        log_dict.update({"eval/mean_eval_solve_rate": stats["eval_solves"].mean()})
        log_dict.update({"eval/mean_eval_eplen": stats["eval_ep_lengths"].mean()})
        for i in range(config["num_eval_levels"]):
            log_dict[f"eval_avg_return/{config['eval_levels'][i]}"] = returns[i]
            log_dict[f"eval_avg_learnability/{config['eval_levels'][i]}"] = stats["eval_learn"][i]
            log_dict[f"eval_avg_solve_rate/{config['eval_levels'][i]}"] = stats["eval_solves"][i]
            log_dict[f"eval_avg_episode_length/{config['eval_levels'][i]}"] = stats["eval_ep_lengths"][i]
            log_dict[f"eval_get_max_eplen/{config['eval_levels'][i]}"] = stats["eval_get_max_eplen"][i]
            log_dict[f"episode_return_bigger_than_negative/{config['eval_levels'][i]}"] = stats[
                "episode_return_bigger_than_negative"
            ][i]

        def _aggregate_per_size(values, name):
            to_return = {}
            for group_name, indices in eval_group_indices.items():
                to_return[f"{name}_{group_name}"] = values[indices].mean()
            return to_return

        log_dict.update(_aggregate_per_size(returns, "eval_aggregate/return"))
        log_dict.update(_aggregate_per_size(stats["eval_solves"], "eval_aggregate/solve_rate"))

        if config["EVAL_ON_SAMPLED"]:
            log_dict.update({"eval/mean_eval_return_sampled": stats["eval_dr_returns"].mean()})
            log_dict.update({"eval/mean_eval_solve_rate_sampled": stats["eval_dr_solve_rates"].mean()})
            log_dict.update({"eval/mean_eval_eplen_sampled": stats["eval_dr_eplen"].mean()})

        # level sampler
        log_dict.update(train_state_info["log"])

        # images
        log_dict.update(
            {
                "images/highest_scoring_level": wandb.Image(
                    np.array(stats["highest_scoring_level"]), caption="Highest scoring level"
                )
            }
        )
        log_dict.update(
            {
                "images/highest_weighted_level": wandb.Image(
                    np.array(stats["highest_weighted_level"]), caption="Highest weighted level"
                )
            }
        )

        for s in ["dr", "replay", "mutation"]:
            if train_state_info["info"][f"num_{s}_updates"] > 0:
                log_dict.update(
                    {
                        f"images/{s}_levels": [
                            wandb.Image(np.array(image), caption=f"{score}")
                            for image, score in zip(stats[f"{s}_levels"], stats[f"{s}_scores"])
                        ]
                    }
                )
                if stats["log_videos"]:
                    # animations
                    rollout_ep = stats[f"{s}_ep_len"]
                    arr = np.array(stats[f"{s}_rollout"][:rollout_ep])
                    log_dict.update(
                        {
                            f"media/{s}_eval": wandb.Video(
                                arr.astype(np.uint8), fps=15, caption=f"{s.capitalize()} (len {rollout_ep})"
                            )
                        }
                    )
                #  * 255

        # DR, Replay and Mutate Returns
        dr_inds = (stats["update_state"] == UpdateState.DR).nonzero()[0]
        rep_inds = (stats["update_state"] == UpdateState.REPLAY).nonzero()[0]
        mut_inds = (stats["update_state"] == UpdateState.MUTATE).nonzero()[0]

        for name, inds in [
            ("DR", dr_inds),
            ("REPLAY", rep_inds),
            ("MUTATION", mut_inds),
        ]:
            if len(inds) > 0:
                log_dict.update(
                    {
                        f"{name}/episode_return": stats["episode_return"][inds].mean(),
                        f"{name}/mean_eplen": stats["returned_episode_lengths"][inds].mean(),
                        f"{name}/mean_success": stats["returned_episode_solved"][inds].mean(),
                        f"{name}/noop_return": stats["noop_returns"][inds].mean(),
                        f"{name}/noop_eplen": stats["noop_eplen"][inds].mean(),
                        f"{name}/noop_success": stats["noop_success"][inds].mean(),
                        f"{name}/random_return": stats["random_returns"][inds].mean(),
                        f"{name}/random_eplen": stats["random_eplen"][inds].mean(),
                        f"{name}/random_success": stats["random_success"][inds].mean(),
                    }
                )
                for k in stats:
                    if "complexity/" in k:
                        k2 = "complexity/" + name + "_" + k.replace("complexity/", "")
                        log_dict.update({k2: stats[k][inds].mean()})
                    if "ued_scores/" in k:
                        k2 = "ued_scores/" + name + "_" + k.replace("ued_scores/", "")
                        log_dict.update({k2: stats[k][inds].mean()})

        # Eval rollout animations
        if stats["log_videos"]:
            for i in range((config["num_eval_levels"])):
                frames, episode_length = stats["eval_animation"][0][:, i], stats["eval_animation"][1][i]
                frames = np.array(frames[:episode_length])
                log_dict.update(
                    {
                        f"media/eval_video_{config['eval_levels'][i]}": wandb.Video(
                            frames.astype(np.uint8), fps=15, caption=f"Len ({episode_length})"
                        )
                    }
                )

        wandb.log(log_dict)

    def get_all_metrics(
        rng,
        losses,
        info,
        init_env_state,
        init_obs,
        dones,
        grads,
        all_ued_scores,
        new_levels,
    ):
        noop_returns, noop_len, noop_success, random_returns, random_lens, random_success = no_op_and_random_rollout(
            env,
            env_params,
            rng,
            init_obs,
            init_env_state,
            config["num_train_envs"],
            config["num_steps"] * config["outer_rollout_steps"],
        )
        metrics = (
            {
                "losses": jax.tree_util.tree_map(lambda x: x.mean(), losses),
                "returned_episode_lengths": (info["returned_episode_lengths"] * dones).sum()
                / jnp.maximum(1, dones.sum()),
                "max_episode_length": info["returned_episode_lengths"].max(),
                "levels_played": init_env_state.env_state.env_state,
                "episode_return": (info["returned_episode_returns"] * dones).sum() / jnp.maximum(1, dones.sum()),
                "episode_return_v2": (info["returned_episode_returns"] * info["returned_episode"]).sum()
                / jnp.maximum(1, info["returned_episode"].sum()),
                "grad_norms": grads.mean(),
                "noop_returns": noop_returns,
                "noop_eplen": noop_len,
                "noop_success": noop_success,
                "random_returns": random_returns,
                "random_eplen": random_lens,
                "random_success": random_success,
                "returned_episode_solved": (info["returned_episode_solved"] * dones).sum()
                / jnp.maximum(1, dones.sum()),
            }
            | get_level_complexity_metrics(new_levels, static_env_params)
            | get_ued_score_metrics(all_ued_scores)
        )
        return metrics

    # Setup the environment.
    def make_env(static_env_params):
        env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
        env = AutoReplayWrapper(env)
        env = UnderspecifiedToGymnaxWrapper(env)
        env = DenseRewardWrapper(env, dense_reward_scale=config["dense_reward_scale"])
        env = LogWrapper(env)
        return env

    env = make_env(static_env_params)

    if config["train_level_mode"] == "list":
        sample_random_level = make_reset_train_function_with_list_of_levels(
            config, config["train_levels_list"], static_env_params, make_pcg_state=False, is_loading_train_levels=True
        )
    elif config["train_level_mode"] == "random":
        sample_random_level = make_reset_train_function_with_mutations(
            env.physics_engine, env_params, static_env_params, config, make_pcg_state=False
        )
    else:
        raise ValueError(f"Unknown train_level_mode: {config['train_level_mode']}")

    if config["use_accel"] and config["accel_start_from_empty"]:

        def make_sample_random_level():
            def inner(rng):
                def _inner_accel(rng):
                    return create_random_starting_distribution(
                        rng, env_params, static_env_params, ued_params, config["env_size_name"], controllable=True
                    )

                def _inner_accel_not_controllable(rng):
                    return create_random_starting_distribution(
                        rng, env_params, static_env_params, ued_params, config["env_size_name"], controllable=False
                    )

                rng, _rng = jax.random.split(rng)
                return _inner_accel(_rng)

            return inner

        sample_random_level = make_sample_random_level()

    sample_random_levels = make_vmapped_filtered_level_sampler(
        sample_random_level, env_params, static_env_params, config, make_pcg_state=False, env=env
    )

    def generate_world():
        raise NotImplementedError
        pass

    def generate_eval_world(rng, env_params, static_env_params, level_idx):
        # jax.random.split(jax.random.PRNGKey(101), num_levels), env_params, static_env_params, jnp.arange(num_levels)

        raise NotImplementedError

    _, eval_static_env_params = generate_params_from_config(
        config["eval_env_size_true"] | {"frame_skip": config["frame_skip"]}
    )
    eval_env = make_env(eval_static_env_params)
    ued_params = generate_ued_params_from_config(config)

    mutate_world = make_mutate_env(static_env_params, env_params, ued_params)

    def make_render_fn(static_env_params):
        render_fn_inner = make_render_pixels(env_params, static_env_params)
        render_fn = lambda x: render_fn_inner(x).transpose(1, 0, 2)[::-1]
        return render_fn

    render_fn = make_render_fn(static_env_params)
    render_fn_eval = make_render_fn(eval_static_env_params)
    if config["EVAL_ON_SAMPLED"]:
        NUM_EVAL_DR_LEVELS = 200
        key_to_sample_dr_eval_set = jax.random.PRNGKey(100)
        DR_EVAL_LEVELS = sample_random_levels(key_to_sample_dr_eval_set, NUM_EVAL_DR_LEVELS)

    # And the level sampler
    level_sampler = LevelSampler(
        capacity=config["level_buffer_capacity"],
        replay_prob=config["replay_prob"],
        staleness_coeff=config["staleness_coeff"],
        minimum_fill_ratio=config["minimum_fill_ratio"],
        prioritization=config["prioritization"],
        prioritization_params={"temperature": config["temperature"], "k": config["topk_k"]},
        duplicate_check=config["buffer_duplicate_check"],
    )

    @jax.jit
    def create_train_state(rng) -> TrainState:
        # Creates the train state
        def linear_schedule(count):
            frac = 1.0 - (count // (config["num_minibatches"] * config["update_epochs"])) / (
                config["num_updates"] * config["outer_rollout_steps"]
            )
            return config["lr"] * frac

        rng, _rng = jax.random.split(rng)
        init_state = jax.tree.map(lambda x: x[0], sample_random_levels(_rng, 1))

        rng, _rng = jax.random.split(rng)
        obs, _ = env.reset_to_level(_rng, init_state, env_params)
        ns = config["num_steps"] * config["outer_rollout_steps"]
        obs = jax.tree.map(
            lambda x: jnp.repeat(jnp.repeat(x[None, ...], config["num_train_envs"], axis=0)[None, ...], ns, axis=0),
            obs,
        )
        init_x = (obs, jnp.zeros((ns, config["num_train_envs"]), dtype=jnp.bool_))
        network = make_network_from_config(env, env_params, config)
        rng, _rng = jax.random.split(rng)
        network_params = network.init(_rng, ScannedRNN.initialize_carry(config["num_train_envs"]), init_x)

        if config["anneal_lr"]:
            tx = optax.chain(
                optax.clip_by_global_norm(config["max_grad_norm"]),
                optax.adam(learning_rate=linear_schedule, eps=1e-5),
            )
        else:
            tx = optax.chain(
                optax.clip_by_global_norm(config["max_grad_norm"]),
                optax.adam(config["lr"], eps=1e-5),
            )

        pholder_level = jax.tree.map(lambda x: x[0], sample_random_levels(jax.random.PRNGKey(0), 1))
        sampler = level_sampler.initialize(pholder_level, {"max_return": -jnp.inf})
        pholder_level_batch = jax.tree_util.tree_map(
            lambda x: jnp.array([x]).repeat(config["num_train_envs"], axis=0), pholder_level
        )
        pholder_rollout_batch = (
            jax.tree.map(
                lambda x: jnp.repeat(
                    jnp.expand_dims(x, 0), repeats=config["num_steps"] * config["outer_rollout_steps"], axis=0
                ),
                init_state,
            ),
            init_x[1][:, 0],
        )

        pholder_level_batch_scores = jnp.zeros((config["num_train_envs"],), dtype=jnp.float32)
        train_state = TrainState.create(
            apply_fn=network.apply,
            params=network_params,
            tx=tx,
            sampler=sampler,
            update_state=0,
            num_dr_updates=0,
            num_replay_updates=0,
            num_mutation_updates=0,
            dr_last_level_batch_scores=pholder_level_batch_scores,
            replay_last_level_batch_scores=pholder_level_batch_scores,
            mutation_last_level_batch_scores=pholder_level_batch_scores,
            dr_last_level_batch=pholder_level_batch,
            replay_last_level_batch=pholder_level_batch,
            mutation_last_level_batch=pholder_level_batch,
            dr_last_rollout_batch=pholder_rollout_batch,
            replay_last_rollout_batch=pholder_rollout_batch,
            mutation_last_rollout_batch=pholder_rollout_batch,
        )

        if config["load_from_checkpoint"] != None:
            print("LOADING from", config["load_from_checkpoint"], "with only params =", config["load_only_params"])
            train_state = load_train_state_from_wandb_artifact_path(
                train_state,
                config["load_from_checkpoint"],
                load_only_params=config["load_only_params"],
                legacy=config["load_legacy_checkpoint"],
            )
        return train_state

    all_eval_levels = get_eval_levels(config["eval_levels"], eval_env.static_env_params)
    eval_group_indices = get_eval_level_groups(config["eval_levels"])

    @jax.jit
    def train_step(carry: Tuple[chex.PRNGKey, TrainState], _):
        """
        This is the main training loop. It basically calls either `on_new_levels`, `on_replay_levels`, or `on_mutate_levels` at every step.
        """

        def on_new_levels(rng: chex.PRNGKey, train_state: TrainState):
            """
            Samples new (randomly-generated) levels and evaluates the policy on these. It also then adds the levels to the level buffer if they have high-enough scores.
            The agent is updated on these trajectories iff `config["exploratory_grad_updates"]` is True.
            """
            sampler = train_state.sampler

            # Reset
            rng, rng_levels, rng_reset = jax.random.split(rng, 3)
            new_levels = sample_random_levels(rng_levels, config["num_train_envs"])
            init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
                jax.random.split(rng_reset, config["num_train_envs"]), new_levels, env_params
            )
            init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
            # Rollout
            (
                (rng, train_state, new_hstate, last_obs, last_env_state),
                (
                    obs,
                    actions,
                    rewards,
                    dones,
                    log_probs,
                    values,
                    info,
                    advantages,
                    targets,
                    losses,
                    grads,
                    rollout_states,
                ),
            ) = sample_trajectories_and_learn(
                env,
                env_params,
                config,
                rng,
                train_state,
                init_hstate,
                init_obs,
                init_env_state,
                update_grad=config["exploratory_grad_updates"],
                return_states=True,
            )
            max_returns = compute_max_returns(dones, rewards)
            scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
            sampler, _ = level_sampler.insert_batch(sampler, new_levels, scores, {"max_return": max_returns})
            rng, _rng = jax.random.split(rng)
            metrics = {
                "update_state": UpdateState.DR,
            } | get_all_metrics(_rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, new_levels)

            train_state = train_state.replace(
                sampler=sampler,
                update_state=UpdateState.DR,
                num_dr_updates=train_state.num_dr_updates + 1,
                dr_last_level_batch=new_levels,
                dr_last_level_batch_scores=scores,
                dr_last_rollout_batch=jax.tree.map(
                    lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
                ),
            )
            return (rng, train_state), metrics

        def on_replay_levels(rng: chex.PRNGKey, train_state: TrainState):
            """
            This samples levels from the level buffer, and updates the policy on them.
            """
            sampler = train_state.sampler

            # Collect trajectories on replay levels
            rng, rng_levels, rng_reset = jax.random.split(rng, 3)
            sampler, (level_inds, levels) = level_sampler.sample_replay_levels(
                sampler, rng_levels, config["num_train_envs"]
            )
            init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
                jax.random.split(rng_reset, config["num_train_envs"]), levels, env_params
            )
            init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
            (
                (rng, train_state, new_hstate, last_obs, last_env_state),
                (
                    obs,
                    actions,
                    rewards,
                    dones,
                    log_probs,
                    values,
                    info,
                    advantages,
                    targets,
                    losses,
                    grads,
                    rollout_states,
                ),
            ) = sample_trajectories_and_learn(
                env,
                env_params,
                config,
                rng,
                train_state,
                init_hstate,
                init_obs,
                init_env_state,
                update_grad=True,
                return_states=True,
            )

            max_returns = jnp.maximum(
                level_sampler.get_levels_extra(sampler, level_inds)["max_return"], compute_max_returns(dones, rewards)
            )
            scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
            sampler = level_sampler.update_batch(sampler, level_inds, scores, {"max_return": max_returns})

            rng, _rng = jax.random.split(rng)
            metrics = {
                "update_state": UpdateState.REPLAY,
            } | get_all_metrics(_rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, levels)
            train_state = train_state.replace(
                sampler=sampler,
                update_state=UpdateState.REPLAY,
                num_replay_updates=train_state.num_replay_updates + 1,
                replay_last_level_batch=levels,
                replay_last_level_batch_scores=scores,
                replay_last_rollout_batch=jax.tree.map(
                    lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
                ),
            )
            return (rng, train_state), metrics

        def on_mutate_levels(rng: chex.PRNGKey, train_state: TrainState):
            """
            This mutates the previous batch of replay levels and potentially adds them to the level buffer.
            This also updates the policy iff `config["exploratory_grad_updates"]` is True.
            """

            sampler = train_state.sampler
            rng, rng_mutate, rng_reset = jax.random.split(rng, 3)

            # mutate
            parent_levels = train_state.replay_last_level_batch
            child_levels = jax.vmap(mutate_world, (0, 0, None))(
                jax.random.split(rng_mutate, config["num_train_envs"]), parent_levels, config["num_edits"]
            )
            init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
                jax.random.split(rng_reset, config["num_train_envs"]), child_levels, env_params
            )

            init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
            # rollout
            (
                (rng, train_state, new_hstate, last_obs, last_env_state),
                (
                    obs,
                    actions,
                    rewards,
                    dones,
                    log_probs,
                    values,
                    info,
                    advantages,
                    targets,
                    losses,
                    grads,
                    rollout_states,
                ),
            ) = sample_trajectories_and_learn(
                env,
                env_params,
                config,
                rng,
                train_state,
                init_hstate,
                init_obs,
                init_env_state,
                update_grad=config["exploratory_grad_updates"],
                return_states=True,
            )

            max_returns = compute_max_returns(dones, rewards)
            scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
            sampler, _ = level_sampler.insert_batch(sampler, child_levels, scores, {"max_return": max_returns})

            rng, _rng = jax.random.split(rng)
            metrics = {"update_state": UpdateState.MUTATE,} | get_all_metrics(
                _rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, child_levels
            )

            train_state = train_state.replace(
                sampler=sampler,
                update_state=UpdateState.DR,
                num_mutation_updates=train_state.num_mutation_updates + 1,
                mutation_last_level_batch=child_levels,
                mutation_last_level_batch_scores=scores,
                mutation_last_rollout_batch=jax.tree.map(
                    lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
                ),
            )
            return (rng, train_state), metrics

        rng, train_state = carry
        rng, rng_replay = jax.random.split(rng)

        # The train step makes a decision on which branch to take, either on_new, on_replay or on_mutate.
        # on_mutate is only called if the replay branch has been taken before (as it uses `train_state.update_state`).
        branches = [
            on_new_levels,
            on_replay_levels,
        ]
        if config["use_accel"]:
            s = train_state.update_state
            branch = (1 - s) * level_sampler.sample_replay_decision(train_state.sampler, rng_replay) + 2 * s
            branches.append(on_mutate_levels)
        else:
            branch = level_sampler.sample_replay_decision(train_state.sampler, rng_replay).astype(int)

        return jax.lax.switch(branch, branches, rng, train_state)

    @partial(jax.jit, static_argnums=(2,))
    def eval(rng: chex.PRNGKey, train_state: TrainState, keep_states=True):
        """
        This evaluates the current policy on the set of evaluation levels specified by config["eval_levels"].
        It returns (states, cum_rewards, episode_lengths), with shapes (num_steps, num_eval_levels, ...), (num_eval_levels,), (num_eval_levels,)
        """
        num_levels = config["num_eval_levels"]
        return general_eval(
            rng,
            eval_env,
            env_params,
            train_state,
            all_eval_levels,
            env_params.max_timesteps,
            num_levels,
            keep_states=keep_states,
            return_trajectories=True,
        )

    @partial(jax.jit, static_argnums=(2,))
    def eval_on_dr_levels(rng: chex.PRNGKey, train_state: TrainState, keep_states=False):
        return general_eval(
            rng,
            env,
            env_params,
            train_state,
            DR_EVAL_LEVELS,
            env_params.max_timesteps,
            NUM_EVAL_DR_LEVELS,
            keep_states=keep_states,
        )

    @jax.jit
    def train_and_eval_step(runner_state, _):
        """
        This function runs the train_step for a certain number of iterations, and then evaluates the policy.
        It returns the updated train state, and a dictionary of metrics.
        """
        # Train
        (rng, train_state), metrics = jax.lax.scan(train_step, runner_state, None, config["eval_freq"])

        # Eval
        metrics["update_count"] = (
            train_state.num_dr_updates + train_state.num_replay_updates + train_state.num_mutation_updates
        )

        vid_frequency = get_video_frequency(config, metrics["update_count"])
        should_log_videos = metrics["update_count"] % vid_frequency == 0

        def _compute_eval_learnability(dones, rewards, infos):
            @jax.vmap
            def _single(d, r, i):
                learn, num_eps, num_succ = compute_learnability(config, d, r, i, config["num_eval_levels"])

                return num_eps, num_succ.squeeze(-1)

            num_eps, num_succ = _single(dones, rewards, infos)
            num_eps, num_succ = num_eps.sum(axis=0), num_succ.sum(axis=0)
            success_rate = num_succ / jnp.maximum(1, num_eps)

            return success_rate * (1 - success_rate)

        @jax.jit
        def _get_eval(rng):
            metrics = {}
            rng, rng_eval = jax.random.split(rng)
            (states, cum_rewards, done_idx, episode_lengths, eval_infos), (eval_dones, eval_rewards) = jax.vmap(
                eval, (0, None)
            )(jax.random.split(rng_eval, config["eval_num_attempts"]), train_state)

            # learnability here of the holdout set:
            eval_learn = _compute_eval_learnability(eval_dones, eval_rewards, eval_infos)
            # Collect Metrics
            eval_returns = cum_rewards.mean(axis=0)  # (num_eval_levels,)
            eval_solves = (eval_infos["returned_episode_solved"] * eval_dones).sum(axis=1) / jnp.maximum(
                1, eval_dones.sum(axis=1)
            )
            eval_solves = eval_solves.mean(axis=0)
            metrics["eval_returns"] = eval_returns
            metrics["eval_ep_lengths"] = episode_lengths.mean(axis=0)
            metrics["eval_learn"] = eval_learn
            metrics["eval_solves"] = eval_solves

            metrics["eval_get_max_eplen"] = (episode_lengths == env_params.max_timesteps).mean(axis=0)
            metrics["episode_return_bigger_than_negative"] = (cum_rewards > -0.4).mean(axis=0)

            if config["EVAL_ON_SAMPLED"]:
                states_dr, cum_rewards_dr, done_idx_dr, episode_lengths_dr, infos_dr = jax.vmap(
                    eval_on_dr_levels, (0, None)
                )(jax.random.split(rng_eval, config["eval_num_attempts"]), train_state)

                eval_dr_returns = cum_rewards_dr.mean(axis=0).mean()
                eval_dr_eplen = episode_lengths_dr.mean(axis=0).mean()

                my_eval_dones = infos_dr["returned_episode"]
                eval_dr_solves = (infos_dr["returned_episode_solved"] * my_eval_dones).sum(axis=1) / jnp.maximum(
                    1, my_eval_dones.sum(axis=1)
                )

                metrics["eval_dr_returns"] = eval_dr_returns
                metrics["eval_dr_eplen"] = eval_dr_eplen
                metrics["eval_dr_solve_rates"] = eval_dr_solves
            return metrics, states, episode_lengths, cum_rewards

        @jax.jit
        def _get_videos(rng, states, episode_lengths, cum_rewards):
            metrics = {"log_videos": True}

            # just grab the first run
            states, episode_lengths = jax.tree_util.tree_map(
                lambda x: x[0], (states, episode_lengths)
            )  # (num_steps, num_eval_levels, ...), (num_eval_levels,)
            # And one attempt
            states = jax.tree_util.tree_map(lambda x: x[:, :], states)
            episode_lengths = episode_lengths[:]
            images = jax.vmap(jax.vmap(render_fn_eval))(
                states.env_state.env_state.env_state
            )  # (num_steps, num_eval_levels, ...)
            frames = images.transpose(
                0, 1, 4, 2, 3
            )  # WandB expects color channel before image dimensions when dealing with animations for some reason

            @jax.jit
            def _get_video(rollout_batch):
                states = rollout_batch[0]
                images = jax.vmap(render_fn)(states)  # dimensions are (steps, x, y, 3)
                return (
                    # jax.tree.map(lambda x: x[:].transpose(0, 2, 1, 3)[:, ::-1], images).transpose(0, 3, 1, 2),
                    images.transpose(0, 3, 1, 2),
                    # images.transpose(0, 1, 4, 2, 3),
                    rollout_batch[1][:].argmax(),
                )

            # rollouts
            metrics["dr_rollout"], metrics["dr_ep_len"] = _get_video(train_state.dr_last_rollout_batch)
            metrics["replay_rollout"], metrics["replay_ep_len"] = _get_video(train_state.replay_last_rollout_batch)
            metrics["mutation_rollout"], metrics["mutation_ep_len"] = _get_video(
                train_state.mutation_last_rollout_batch
            )

            metrics["eval_animation"] = (frames, episode_lengths)

            metrics["eval_returns_video"] = cum_rewards[0]
            metrics["eval_len_video"] = episode_lengths

            # Eval on sampled

            return metrics

        @jax.jit
        def _get_dummy_videos(rng, states, episode_lengths, cum_rewards):
            n_eval = config["num_eval_levels"]
            nsteps = env_params.max_timesteps
            nsteps2 = config["outer_rollout_steps"] * config["num_steps"]
            img_size = (
                env.static_env_params.screen_dim[0] // env.static_env_params.downscale,
                env.static_env_params.screen_dim[1] // env.static_env_params.downscale,
            )
            return {
                "log_videos": False,
                "dr_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
                "dr_ep_len": jnp.zeros((), jnp.int32),
                "replay_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
                "replay_ep_len": jnp.zeros((), jnp.int32),
                "mutation_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
                "mutation_ep_len": jnp.zeros((), jnp.int32),
                # "eval_returns": jnp.zeros((n_eval,), jnp.float32),
                # "eval_solves": jnp.zeros((n_eval,), jnp.float32),
                # "eval_learn": jnp.zeros((n_eval,), jnp.float32),
                # "eval_ep_lengths": jnp.zeros((n_eval,), jnp.int32),
                "eval_animation": (
                    jnp.zeros((nsteps, n_eval, 3, *img_size), jnp.float32),
                    jnp.zeros((n_eval,), jnp.int32),
                ),
                "eval_returns_video": jnp.zeros((n_eval,), jnp.float32),
                "eval_len_video": jnp.zeros((n_eval,), jnp.int32),
            }

        rng, rng_eval, rng_vid = jax.random.split(rng, 3)

        metrics_eval, states, episode_lengths, cum_rewards = _get_eval(rng_eval)
        metrics = {
            **metrics,
            **metrics_eval,
            **jax.lax.cond(
                should_log_videos, _get_videos, _get_dummy_videos, rng_vid, states, episode_lengths, cum_rewards
            ),
        }
        max_num_images = 8

        top_regret_ones = max_num_images // 2
        bot_regret_ones = max_num_images - top_regret_ones

        @jax.jit
        def get_values(level_batch, scores):
            args = jnp.argsort(scores)  # low scores are at the start, high scores are at the end

            low_scores = args[:bot_regret_ones]
            high_scores = args[-top_regret_ones:]

            low_levels = jax.tree.map(lambda x: x[low_scores], level_batch)
            high_levels = jax.tree.map(lambda x: x[high_scores], level_batch)

            low_scores = scores[low_scores]
            high_scores = scores[high_scores]
            # now concatenate:
            return jax.vmap(render_fn)(
                jax.tree.map(lambda x, y: jnp.concatenate([x, y], axis=0), low_levels, high_levels)
            ), jnp.concatenate([low_scores, high_scores], axis=0)

        metrics["dr_levels"], metrics["dr_scores"] = get_values(
            train_state.dr_last_level_batch, train_state.dr_last_level_batch_scores
        )
        metrics["replay_levels"], metrics["replay_scores"] = get_values(
            train_state.replay_last_level_batch, train_state.replay_last_level_batch_scores
        )
        metrics["mutation_levels"], metrics["mutation_scores"] = get_values(
            train_state.mutation_last_level_batch, train_state.mutation_last_level_batch_scores
        )

        def _t(i):
            return jax.lax.select(i == 0, config["num_steps"], i)

        metrics["dr_ep_len"] = _t(train_state.dr_last_rollout_batch[1][:].argmax())
        metrics["replay_ep_len"] = _t(train_state.replay_last_rollout_batch[1][:].argmax())
        metrics["mutation_ep_len"] = _t(train_state.mutation_last_rollout_batch[1][:].argmax())

        highest_scoring_level = level_sampler.get_levels(train_state.sampler, train_state.sampler["scores"].argmax())
        highest_weighted_level = level_sampler.get_levels(
            train_state.sampler, level_sampler.level_weights(train_state.sampler).argmax()
        )

        metrics["highest_scoring_level"] = render_fn(highest_scoring_level)
        metrics["highest_weighted_level"] = render_fn(highest_weighted_level)

        # log_eval(metrics, train_state_to_log_dict(runner_state[1], level_sampler))
        jax.debug.callback(log_eval, metrics, train_state_to_log_dict(runner_state[1], level_sampler))
        return (rng, train_state), {"update_count": metrics["update_count"]}

    def log_checkpoint(update_count, train_state):
        if config["save_path"] is not None and config["checkpoint_save_freq"] > 1:
            steps = (
                int(update_count)
                * int(config["num_train_envs"])
                * int(config["num_steps"])
                * int(config["outer_rollout_steps"])
            )
            # save_params_to_wandb(train_state.params, steps, config)
            save_model_to_wandb(train_state, steps, config)

    def train_eval_and_checkpoint_step(runner_state, _):
        runner_state, metrics = jax.lax.scan(
            train_and_eval_step, runner_state, xs=jnp.arange(config["checkpoint_save_freq"] // config["eval_freq"])
        )
        jax.debug.callback(log_checkpoint, metrics["update_count"][-1], runner_state[1])
        return runner_state, metrics

    # Set up the train states
    rng = jax.random.PRNGKey(config["seed"])
    rng_init, rng_train = jax.random.split(rng)

    train_state = create_train_state(rng_init)
    runner_state = (rng_train, train_state)

    runner_state, metrics = jax.lax.scan(
        train_eval_and_checkpoint_step,
        runner_state,
        xs=jnp.arange((config["num_updates"]) // (config["checkpoint_save_freq"])),
    )

    if config["save_path"] is not None:
        # save_params_to_wandb(runner_state[1].params, config["total_timesteps"], config)
        save_model_to_wandb(runner_state[1], config["total_timesteps"], config, is_final=True)

    return runner_state[1]


if __name__ == "__main__":
    main()