Spaces:
Runtime error
Runtime error
File size: 48,332 Bytes
e0f25ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
from functools import partial
import time
from enum import IntEnum
from typing import Tuple
import chex
import hydra
import jax
import jax.numpy as jnp
import numpy as np
from omegaconf import OmegaConf
import optax
from flax import core, struct
from flax.training.train_state import TrainState as BaseTrainState
import wandb
from kinetix.environment.ued.distributions import (
create_random_starting_distribution,
)
from kinetix.environment.ued.ued import (
make_mutate_env,
make_reset_train_function_with_mutations,
make_vmapped_filtered_level_sampler,
)
from kinetix.environment.ued.ued import (
make_mutate_env,
make_reset_train_function_with_list_of_levels,
make_reset_train_function_with_mutations,
)
from kinetix.util.config import (
generate_ued_params_from_config,
get_video_frequency,
init_wandb,
normalise_config,
save_data_to_local_file,
generate_params_from_config,
get_eval_level_groups,
)
from jaxued.environments.underspecified_env import EnvState
from jaxued.level_sampler import LevelSampler
from jaxued.utils import compute_max_returns, max_mc, positive_value_loss
from flax.serialization import to_state_dict
import sys
sys.path.append("experiments")
from kinetix.environment.env import make_kinetix_env_from_name
from kinetix.environment.env_state import StaticEnvParams
from kinetix.environment.wrappers import (
UnderspecifiedToGymnaxWrapper,
LogWrapper,
DenseRewardWrapper,
AutoReplayWrapper,
)
from kinetix.models import make_network_from_config
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.models.actor_critic import ScannedRNN
from kinetix.util.learning import (
general_eval,
get_eval_levels,
no_op_and_random_rollout,
sample_trajectories_and_learn,
)
from kinetix.util.saving import (
load_train_state_from_wandb_artifact_path,
save_model_to_wandb,
)
class UpdateState(IntEnum):
DR = 0
REPLAY = 1
MUTATE = 2
def get_level_complexity_metrics(all_levels: EnvState, static_env_params: StaticEnvParams):
def get_for_single_level(level):
return {
"complexity/num_shapes": level.polygon.active[static_env_params.num_static_fixated_polys :].sum()
+ level.circle.active.sum(),
"complexity/num_joints": level.joint.active.sum(),
"complexity/num_thrusters": level.thruster.active.sum(),
"complexity/num_rjoints": (level.joint.active * jnp.logical_not(level.joint.is_fixed_joint)).sum(),
"complexity/num_fjoints": (level.joint.active * (level.joint.is_fixed_joint)).sum(),
"complexity/has_ball": ((level.polygon_shape_roles == 1) * level.polygon.active).sum()
+ ((level.circle_shape_roles == 1) * level.circle.active).sum(),
"complexity/has_goal": ((level.polygon_shape_roles == 2) * level.polygon.active).sum()
+ ((level.circle_shape_roles == 2) * level.circle.active).sum(),
}
return jax.tree.map(lambda x: x.mean(), jax.vmap(get_for_single_level)(all_levels))
def get_ued_score_metrics(all_ued_scores):
(mc, pvl, learn) = all_ued_scores
scores = {}
for score, name in zip([mc, pvl, learn], ["MaxMC", "PVL", "Learnability"]):
scores[f"ued_scores/{name}/Mean"] = score.mean()
scores[f"ued_scores_additional/{name}/Max"] = score.max()
scores[f"ued_scores_additional/{name}/Min"] = score.min()
return scores
class TrainState(BaseTrainState):
sampler: core.FrozenDict[str, chex.ArrayTree] = struct.field(pytree_node=True)
update_state: UpdateState = struct.field(pytree_node=True)
# === Below is used for logging ===
num_dr_updates: int
num_replay_updates: int
num_mutation_updates: int
dr_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)
replay_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)
mutation_last_level_batch_scores: chex.ArrayTree = struct.field(pytree_node=True)
dr_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)
replay_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)
mutation_last_level_batch: chex.ArrayTree = struct.field(pytree_node=True)
dr_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)
replay_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)
mutation_last_rollout_batch: chex.ArrayTree = struct.field(pytree_node=True)
# region PPO helper functions
# endregion
def train_state_to_log_dict(train_state: TrainState, level_sampler: LevelSampler) -> dict:
"""To prevent the entire (large) train_state to be copied to the CPU when doing logging, this function returns all of the important information in a dictionary format.
Anything in the `log` key will be logged to wandb.
Args:
train_state (TrainState):
level_sampler (LevelSampler):
Returns:
dict:
"""
sampler = train_state.sampler
idx = jnp.arange(level_sampler.capacity) < sampler["size"]
s = jnp.maximum(idx.sum(), 1)
return {
"log": {
"level_sampler/size": sampler["size"],
"level_sampler/episode_count": sampler["episode_count"],
"level_sampler/max_score": sampler["scores"].max(),
"level_sampler/weighted_score": (sampler["scores"] * level_sampler.level_weights(sampler)).sum(),
"level_sampler/mean_score": (sampler["scores"] * idx).sum() / s,
},
"info": {
"num_dr_updates": train_state.num_dr_updates,
"num_replay_updates": train_state.num_replay_updates,
"num_mutation_updates": train_state.num_mutation_updates,
},
}
def compute_learnability(config, done, reward, info, num_envs):
num_agents = 1
BATCH_ACTORS = num_envs * num_agents
rollout_length = config["num_steps"] * config["outer_rollout_steps"]
@partial(jax.vmap, in_axes=(None, 1, 1, 1))
@partial(jax.jit, static_argnums=(0,))
def _calc_outcomes_by_agent(max_steps: int, dones, returns, info):
idxs = jnp.arange(max_steps)
@partial(jax.vmap, in_axes=(0, 0))
def __ep_outcomes(start_idx, end_idx):
mask = (idxs > start_idx) & (idxs <= end_idx) & (end_idx != max_steps)
r = jnp.sum(returns * mask)
goal_r = info["GoalR"]
success = jnp.sum(goal_r * mask)
collision = 0
timeo = 0
l = end_idx - start_idx
return r, success, collision, timeo, l
done_idxs = jnp.argwhere(dones, size=50, fill_value=max_steps).squeeze()
mask_done = jnp.where(done_idxs == max_steps, 0, 1)
ep_return, success, collision, timeo, length = __ep_outcomes(
jnp.concatenate([jnp.array([-1]), done_idxs[:-1]]), done_idxs
)
return {
"ep_return": ep_return.mean(where=mask_done),
"num_episodes": mask_done.sum(),
"num_success": success.sum(where=mask_done),
"success_rate": success.mean(where=mask_done),
"collision_rate": collision.mean(where=mask_done),
"timeout_rate": timeo.mean(where=mask_done),
"ep_len": length.mean(where=mask_done),
}
done_by_env = done.reshape((-1, num_agents, num_envs))
reward_by_env = reward.reshape((-1, num_agents, num_envs))
o = _calc_outcomes_by_agent(rollout_length, done, reward, info)
success_by_env = o["success_rate"].reshape((num_agents, num_envs))
learnability_by_env = (success_by_env * (1 - success_by_env)).sum(axis=0)
return (
learnability_by_env,
o["num_episodes"].reshape(num_agents, num_envs).sum(axis=0),
o["num_success"].reshape(num_agents, num_envs).T,
) # so agents is at the end.
def compute_score(
config: dict, dones: chex.Array, values: chex.Array, max_returns: chex.Array, reward, info, advantages: chex.Array
) -> chex.Array:
# Computes the score for each level
if config["score_function"] == "MaxMC":
return max_mc(dones, values, max_returns)
elif config["score_function"] == "pvl":
return positive_value_loss(dones, advantages)
elif config["score_function"] == "learnability":
learnability, num_episodes, num_success = compute_learnability(
config, dones, reward, info, config["num_train_envs"]
)
return learnability
else:
raise ValueError(f"Unknown score function: {config['score_function']}")
def compute_all_scores(
config: dict,
dones: chex.Array,
values: chex.Array,
max_returns: chex.Array,
reward,
info,
advantages: chex.Array,
return_success_rate=False,
):
mc = max_mc(dones, values, max_returns)
pvl = positive_value_loss(dones, advantages)
learnability, num_episodes, num_success = compute_learnability(
config, dones, reward, info, config["num_train_envs"]
)
if config["score_function"] == "MaxMC":
main_score = mc
elif config["score_function"] == "pvl":
main_score = pvl
elif config["score_function"] == "learnability":
main_score = learnability
else:
raise ValueError(f"Unknown score function: {config['score_function']}")
if return_success_rate:
success_rate = num_success.squeeze(1) / jnp.maximum(num_episodes, 1)
return main_score, (mc, pvl, learnability, success_rate)
return main_score, (mc, pvl, learnability)
@hydra.main(version_base=None, config_path="../configs", config_name="plr")
def main(config=None):
my_name = "PLR"
config = OmegaConf.to_container(config)
if config["ued"]["replay_prob"] == 0.0:
my_name = "DR"
elif config["ued"]["use_accel"]:
my_name = "ACCEL"
time_start = time.time()
config = normalise_config(config, my_name)
env_params, static_env_params = generate_params_from_config(config)
config["env_params"] = to_state_dict(env_params)
config["static_env_params"] = to_state_dict(static_env_params)
run = init_wandb(config, my_name)
config = wandb.config
time_prev = time.time()
def log_eval(stats, train_state_info):
nonlocal time_prev
print(f"Logging update: {stats['update_count']}")
total_loss = jnp.mean(stats["losses"][0])
if jnp.isnan(total_loss):
print("NaN loss, skipping logging")
raise ValueError("NaN loss")
# generic stats
env_steps = int(
int(stats["update_count"]) * config["num_train_envs"] * config["num_steps"] * config["outer_rollout_steps"]
)
env_steps_delta = (
config["eval_freq"] * config["num_train_envs"] * config["num_steps"] * config["outer_rollout_steps"]
)
time_now = time.time()
log_dict = {
"timing/num_updates": stats["update_count"],
"timing/num_env_steps": env_steps,
"timing/sps": env_steps_delta / (time_now - time_prev),
"timing/sps_agg": env_steps / (time_now - time_start),
"loss/total_loss": jnp.mean(stats["losses"][0]),
"loss/value_loss": jnp.mean(stats["losses"][1][0]),
"loss/policy_loss": jnp.mean(stats["losses"][1][1]),
"loss/entropy_loss": jnp.mean(stats["losses"][1][2]),
}
time_prev = time_now
# evaluation performance
returns = stats["eval_returns"]
log_dict.update({"eval/mean_eval_return": returns.mean()})
log_dict.update({"eval/mean_eval_learnability": stats["eval_learn"].mean()})
log_dict.update({"eval/mean_eval_solve_rate": stats["eval_solves"].mean()})
log_dict.update({"eval/mean_eval_eplen": stats["eval_ep_lengths"].mean()})
for i in range(config["num_eval_levels"]):
log_dict[f"eval_avg_return/{config['eval_levels'][i]}"] = returns[i]
log_dict[f"eval_avg_learnability/{config['eval_levels'][i]}"] = stats["eval_learn"][i]
log_dict[f"eval_avg_solve_rate/{config['eval_levels'][i]}"] = stats["eval_solves"][i]
log_dict[f"eval_avg_episode_length/{config['eval_levels'][i]}"] = stats["eval_ep_lengths"][i]
log_dict[f"eval_get_max_eplen/{config['eval_levels'][i]}"] = stats["eval_get_max_eplen"][i]
log_dict[f"episode_return_bigger_than_negative/{config['eval_levels'][i]}"] = stats[
"episode_return_bigger_than_negative"
][i]
def _aggregate_per_size(values, name):
to_return = {}
for group_name, indices in eval_group_indices.items():
to_return[f"{name}_{group_name}"] = values[indices].mean()
return to_return
log_dict.update(_aggregate_per_size(returns, "eval_aggregate/return"))
log_dict.update(_aggregate_per_size(stats["eval_solves"], "eval_aggregate/solve_rate"))
if config["EVAL_ON_SAMPLED"]:
log_dict.update({"eval/mean_eval_return_sampled": stats["eval_dr_returns"].mean()})
log_dict.update({"eval/mean_eval_solve_rate_sampled": stats["eval_dr_solve_rates"].mean()})
log_dict.update({"eval/mean_eval_eplen_sampled": stats["eval_dr_eplen"].mean()})
# level sampler
log_dict.update(train_state_info["log"])
# images
log_dict.update(
{
"images/highest_scoring_level": wandb.Image(
np.array(stats["highest_scoring_level"]), caption="Highest scoring level"
)
}
)
log_dict.update(
{
"images/highest_weighted_level": wandb.Image(
np.array(stats["highest_weighted_level"]), caption="Highest weighted level"
)
}
)
for s in ["dr", "replay", "mutation"]:
if train_state_info["info"][f"num_{s}_updates"] > 0:
log_dict.update(
{
f"images/{s}_levels": [
wandb.Image(np.array(image), caption=f"{score}")
for image, score in zip(stats[f"{s}_levels"], stats[f"{s}_scores"])
]
}
)
if stats["log_videos"]:
# animations
rollout_ep = stats[f"{s}_ep_len"]
arr = np.array(stats[f"{s}_rollout"][:rollout_ep])
log_dict.update(
{
f"media/{s}_eval": wandb.Video(
arr.astype(np.uint8), fps=15, caption=f"{s.capitalize()} (len {rollout_ep})"
)
}
)
# * 255
# DR, Replay and Mutate Returns
dr_inds = (stats["update_state"] == UpdateState.DR).nonzero()[0]
rep_inds = (stats["update_state"] == UpdateState.REPLAY).nonzero()[0]
mut_inds = (stats["update_state"] == UpdateState.MUTATE).nonzero()[0]
for name, inds in [
("DR", dr_inds),
("REPLAY", rep_inds),
("MUTATION", mut_inds),
]:
if len(inds) > 0:
log_dict.update(
{
f"{name}/episode_return": stats["episode_return"][inds].mean(),
f"{name}/mean_eplen": stats["returned_episode_lengths"][inds].mean(),
f"{name}/mean_success": stats["returned_episode_solved"][inds].mean(),
f"{name}/noop_return": stats["noop_returns"][inds].mean(),
f"{name}/noop_eplen": stats["noop_eplen"][inds].mean(),
f"{name}/noop_success": stats["noop_success"][inds].mean(),
f"{name}/random_return": stats["random_returns"][inds].mean(),
f"{name}/random_eplen": stats["random_eplen"][inds].mean(),
f"{name}/random_success": stats["random_success"][inds].mean(),
}
)
for k in stats:
if "complexity/" in k:
k2 = "complexity/" + name + "_" + k.replace("complexity/", "")
log_dict.update({k2: stats[k][inds].mean()})
if "ued_scores/" in k:
k2 = "ued_scores/" + name + "_" + k.replace("ued_scores/", "")
log_dict.update({k2: stats[k][inds].mean()})
# Eval rollout animations
if stats["log_videos"]:
for i in range((config["num_eval_levels"])):
frames, episode_length = stats["eval_animation"][0][:, i], stats["eval_animation"][1][i]
frames = np.array(frames[:episode_length])
log_dict.update(
{
f"media/eval_video_{config['eval_levels'][i]}": wandb.Video(
frames.astype(np.uint8), fps=15, caption=f"Len ({episode_length})"
)
}
)
wandb.log(log_dict)
def get_all_metrics(
rng,
losses,
info,
init_env_state,
init_obs,
dones,
grads,
all_ued_scores,
new_levels,
):
noop_returns, noop_len, noop_success, random_returns, random_lens, random_success = no_op_and_random_rollout(
env,
env_params,
rng,
init_obs,
init_env_state,
config["num_train_envs"],
config["num_steps"] * config["outer_rollout_steps"],
)
metrics = (
{
"losses": jax.tree_util.tree_map(lambda x: x.mean(), losses),
"returned_episode_lengths": (info["returned_episode_lengths"] * dones).sum()
/ jnp.maximum(1, dones.sum()),
"max_episode_length": info["returned_episode_lengths"].max(),
"levels_played": init_env_state.env_state.env_state,
"episode_return": (info["returned_episode_returns"] * dones).sum() / jnp.maximum(1, dones.sum()),
"episode_return_v2": (info["returned_episode_returns"] * info["returned_episode"]).sum()
/ jnp.maximum(1, info["returned_episode"].sum()),
"grad_norms": grads.mean(),
"noop_returns": noop_returns,
"noop_eplen": noop_len,
"noop_success": noop_success,
"random_returns": random_returns,
"random_eplen": random_lens,
"random_success": random_success,
"returned_episode_solved": (info["returned_episode_solved"] * dones).sum()
/ jnp.maximum(1, dones.sum()),
}
| get_level_complexity_metrics(new_levels, static_env_params)
| get_ued_score_metrics(all_ued_scores)
)
return metrics
# Setup the environment.
def make_env(static_env_params):
env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
env = AutoReplayWrapper(env)
env = UnderspecifiedToGymnaxWrapper(env)
env = DenseRewardWrapper(env, dense_reward_scale=config["dense_reward_scale"])
env = LogWrapper(env)
return env
env = make_env(static_env_params)
if config["train_level_mode"] == "list":
sample_random_level = make_reset_train_function_with_list_of_levels(
config, config["train_levels_list"], static_env_params, make_pcg_state=False, is_loading_train_levels=True
)
elif config["train_level_mode"] == "random":
sample_random_level = make_reset_train_function_with_mutations(
env.physics_engine, env_params, static_env_params, config, make_pcg_state=False
)
else:
raise ValueError(f"Unknown train_level_mode: {config['train_level_mode']}")
if config["use_accel"] and config["accel_start_from_empty"]:
def make_sample_random_level():
def inner(rng):
def _inner_accel(rng):
return create_random_starting_distribution(
rng, env_params, static_env_params, ued_params, config["env_size_name"], controllable=True
)
def _inner_accel_not_controllable(rng):
return create_random_starting_distribution(
rng, env_params, static_env_params, ued_params, config["env_size_name"], controllable=False
)
rng, _rng = jax.random.split(rng)
return _inner_accel(_rng)
return inner
sample_random_level = make_sample_random_level()
sample_random_levels = make_vmapped_filtered_level_sampler(
sample_random_level, env_params, static_env_params, config, make_pcg_state=False, env=env
)
def generate_world():
raise NotImplementedError
pass
def generate_eval_world(rng, env_params, static_env_params, level_idx):
# jax.random.split(jax.random.PRNGKey(101), num_levels), env_params, static_env_params, jnp.arange(num_levels)
raise NotImplementedError
_, eval_static_env_params = generate_params_from_config(
config["eval_env_size_true"] | {"frame_skip": config["frame_skip"]}
)
eval_env = make_env(eval_static_env_params)
ued_params = generate_ued_params_from_config(config)
mutate_world = make_mutate_env(static_env_params, env_params, ued_params)
def make_render_fn(static_env_params):
render_fn_inner = make_render_pixels(env_params, static_env_params)
render_fn = lambda x: render_fn_inner(x).transpose(1, 0, 2)[::-1]
return render_fn
render_fn = make_render_fn(static_env_params)
render_fn_eval = make_render_fn(eval_static_env_params)
if config["EVAL_ON_SAMPLED"]:
NUM_EVAL_DR_LEVELS = 200
key_to_sample_dr_eval_set = jax.random.PRNGKey(100)
DR_EVAL_LEVELS = sample_random_levels(key_to_sample_dr_eval_set, NUM_EVAL_DR_LEVELS)
# And the level sampler
level_sampler = LevelSampler(
capacity=config["level_buffer_capacity"],
replay_prob=config["replay_prob"],
staleness_coeff=config["staleness_coeff"],
minimum_fill_ratio=config["minimum_fill_ratio"],
prioritization=config["prioritization"],
prioritization_params={"temperature": config["temperature"], "k": config["topk_k"]},
duplicate_check=config["buffer_duplicate_check"],
)
@jax.jit
def create_train_state(rng) -> TrainState:
# Creates the train state
def linear_schedule(count):
frac = 1.0 - (count // (config["num_minibatches"] * config["update_epochs"])) / (
config["num_updates"] * config["outer_rollout_steps"]
)
return config["lr"] * frac
rng, _rng = jax.random.split(rng)
init_state = jax.tree.map(lambda x: x[0], sample_random_levels(_rng, 1))
rng, _rng = jax.random.split(rng)
obs, _ = env.reset_to_level(_rng, init_state, env_params)
ns = config["num_steps"] * config["outer_rollout_steps"]
obs = jax.tree.map(
lambda x: jnp.repeat(jnp.repeat(x[None, ...], config["num_train_envs"], axis=0)[None, ...], ns, axis=0),
obs,
)
init_x = (obs, jnp.zeros((ns, config["num_train_envs"]), dtype=jnp.bool_))
network = make_network_from_config(env, env_params, config)
rng, _rng = jax.random.split(rng)
network_params = network.init(_rng, ScannedRNN.initialize_carry(config["num_train_envs"]), init_x)
if config["anneal_lr"]:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(learning_rate=linear_schedule, eps=1e-5),
)
else:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(config["lr"], eps=1e-5),
)
pholder_level = jax.tree.map(lambda x: x[0], sample_random_levels(jax.random.PRNGKey(0), 1))
sampler = level_sampler.initialize(pholder_level, {"max_return": -jnp.inf})
pholder_level_batch = jax.tree_util.tree_map(
lambda x: jnp.array([x]).repeat(config["num_train_envs"], axis=0), pholder_level
)
pholder_rollout_batch = (
jax.tree.map(
lambda x: jnp.repeat(
jnp.expand_dims(x, 0), repeats=config["num_steps"] * config["outer_rollout_steps"], axis=0
),
init_state,
),
init_x[1][:, 0],
)
pholder_level_batch_scores = jnp.zeros((config["num_train_envs"],), dtype=jnp.float32)
train_state = TrainState.create(
apply_fn=network.apply,
params=network_params,
tx=tx,
sampler=sampler,
update_state=0,
num_dr_updates=0,
num_replay_updates=0,
num_mutation_updates=0,
dr_last_level_batch_scores=pholder_level_batch_scores,
replay_last_level_batch_scores=pholder_level_batch_scores,
mutation_last_level_batch_scores=pholder_level_batch_scores,
dr_last_level_batch=pholder_level_batch,
replay_last_level_batch=pholder_level_batch,
mutation_last_level_batch=pholder_level_batch,
dr_last_rollout_batch=pholder_rollout_batch,
replay_last_rollout_batch=pholder_rollout_batch,
mutation_last_rollout_batch=pholder_rollout_batch,
)
if config["load_from_checkpoint"] != None:
print("LOADING from", config["load_from_checkpoint"], "with only params =", config["load_only_params"])
train_state = load_train_state_from_wandb_artifact_path(
train_state,
config["load_from_checkpoint"],
load_only_params=config["load_only_params"],
legacy=config["load_legacy_checkpoint"],
)
return train_state
all_eval_levels = get_eval_levels(config["eval_levels"], eval_env.static_env_params)
eval_group_indices = get_eval_level_groups(config["eval_levels"])
@jax.jit
def train_step(carry: Tuple[chex.PRNGKey, TrainState], _):
"""
This is the main training loop. It basically calls either `on_new_levels`, `on_replay_levels`, or `on_mutate_levels` at every step.
"""
def on_new_levels(rng: chex.PRNGKey, train_state: TrainState):
"""
Samples new (randomly-generated) levels and evaluates the policy on these. It also then adds the levels to the level buffer if they have high-enough scores.
The agent is updated on these trajectories iff `config["exploratory_grad_updates"]` is True.
"""
sampler = train_state.sampler
# Reset
rng, rng_levels, rng_reset = jax.random.split(rng, 3)
new_levels = sample_random_levels(rng_levels, config["num_train_envs"])
init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
jax.random.split(rng_reset, config["num_train_envs"]), new_levels, env_params
)
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
# Rollout
(
(rng, train_state, new_hstate, last_obs, last_env_state),
(
obs,
actions,
rewards,
dones,
log_probs,
values,
info,
advantages,
targets,
losses,
grads,
rollout_states,
),
) = sample_trajectories_and_learn(
env,
env_params,
config,
rng,
train_state,
init_hstate,
init_obs,
init_env_state,
update_grad=config["exploratory_grad_updates"],
return_states=True,
)
max_returns = compute_max_returns(dones, rewards)
scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
sampler, _ = level_sampler.insert_batch(sampler, new_levels, scores, {"max_return": max_returns})
rng, _rng = jax.random.split(rng)
metrics = {
"update_state": UpdateState.DR,
} | get_all_metrics(_rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, new_levels)
train_state = train_state.replace(
sampler=sampler,
update_state=UpdateState.DR,
num_dr_updates=train_state.num_dr_updates + 1,
dr_last_level_batch=new_levels,
dr_last_level_batch_scores=scores,
dr_last_rollout_batch=jax.tree.map(
lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
),
)
return (rng, train_state), metrics
def on_replay_levels(rng: chex.PRNGKey, train_state: TrainState):
"""
This samples levels from the level buffer, and updates the policy on them.
"""
sampler = train_state.sampler
# Collect trajectories on replay levels
rng, rng_levels, rng_reset = jax.random.split(rng, 3)
sampler, (level_inds, levels) = level_sampler.sample_replay_levels(
sampler, rng_levels, config["num_train_envs"]
)
init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
jax.random.split(rng_reset, config["num_train_envs"]), levels, env_params
)
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
(
(rng, train_state, new_hstate, last_obs, last_env_state),
(
obs,
actions,
rewards,
dones,
log_probs,
values,
info,
advantages,
targets,
losses,
grads,
rollout_states,
),
) = sample_trajectories_and_learn(
env,
env_params,
config,
rng,
train_state,
init_hstate,
init_obs,
init_env_state,
update_grad=True,
return_states=True,
)
max_returns = jnp.maximum(
level_sampler.get_levels_extra(sampler, level_inds)["max_return"], compute_max_returns(dones, rewards)
)
scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
sampler = level_sampler.update_batch(sampler, level_inds, scores, {"max_return": max_returns})
rng, _rng = jax.random.split(rng)
metrics = {
"update_state": UpdateState.REPLAY,
} | get_all_metrics(_rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, levels)
train_state = train_state.replace(
sampler=sampler,
update_state=UpdateState.REPLAY,
num_replay_updates=train_state.num_replay_updates + 1,
replay_last_level_batch=levels,
replay_last_level_batch_scores=scores,
replay_last_rollout_batch=jax.tree.map(
lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
),
)
return (rng, train_state), metrics
def on_mutate_levels(rng: chex.PRNGKey, train_state: TrainState):
"""
This mutates the previous batch of replay levels and potentially adds them to the level buffer.
This also updates the policy iff `config["exploratory_grad_updates"]` is True.
"""
sampler = train_state.sampler
rng, rng_mutate, rng_reset = jax.random.split(rng, 3)
# mutate
parent_levels = train_state.replay_last_level_batch
child_levels = jax.vmap(mutate_world, (0, 0, None))(
jax.random.split(rng_mutate, config["num_train_envs"]), parent_levels, config["num_edits"]
)
init_obs, init_env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(
jax.random.split(rng_reset, config["num_train_envs"]), child_levels, env_params
)
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
# rollout
(
(rng, train_state, new_hstate, last_obs, last_env_state),
(
obs,
actions,
rewards,
dones,
log_probs,
values,
info,
advantages,
targets,
losses,
grads,
rollout_states,
),
) = sample_trajectories_and_learn(
env,
env_params,
config,
rng,
train_state,
init_hstate,
init_obs,
init_env_state,
update_grad=config["exploratory_grad_updates"],
return_states=True,
)
max_returns = compute_max_returns(dones, rewards)
scores, all_ued_scores = compute_all_scores(config, dones, values, max_returns, rewards, info, advantages)
sampler, _ = level_sampler.insert_batch(sampler, child_levels, scores, {"max_return": max_returns})
rng, _rng = jax.random.split(rng)
metrics = {"update_state": UpdateState.MUTATE,} | get_all_metrics(
_rng, losses, info, init_env_state, init_obs, dones, grads, all_ued_scores, child_levels
)
train_state = train_state.replace(
sampler=sampler,
update_state=UpdateState.DR,
num_mutation_updates=train_state.num_mutation_updates + 1,
mutation_last_level_batch=child_levels,
mutation_last_level_batch_scores=scores,
mutation_last_rollout_batch=jax.tree.map(
lambda x: x[:, 0], (rollout_states.env_state.env_state.env_state, dones)
),
)
return (rng, train_state), metrics
rng, train_state = carry
rng, rng_replay = jax.random.split(rng)
# The train step makes a decision on which branch to take, either on_new, on_replay or on_mutate.
# on_mutate is only called if the replay branch has been taken before (as it uses `train_state.update_state`).
branches = [
on_new_levels,
on_replay_levels,
]
if config["use_accel"]:
s = train_state.update_state
branch = (1 - s) * level_sampler.sample_replay_decision(train_state.sampler, rng_replay) + 2 * s
branches.append(on_mutate_levels)
else:
branch = level_sampler.sample_replay_decision(train_state.sampler, rng_replay).astype(int)
return jax.lax.switch(branch, branches, rng, train_state)
@partial(jax.jit, static_argnums=(2,))
def eval(rng: chex.PRNGKey, train_state: TrainState, keep_states=True):
"""
This evaluates the current policy on the set of evaluation levels specified by config["eval_levels"].
It returns (states, cum_rewards, episode_lengths), with shapes (num_steps, num_eval_levels, ...), (num_eval_levels,), (num_eval_levels,)
"""
num_levels = config["num_eval_levels"]
return general_eval(
rng,
eval_env,
env_params,
train_state,
all_eval_levels,
env_params.max_timesteps,
num_levels,
keep_states=keep_states,
return_trajectories=True,
)
@partial(jax.jit, static_argnums=(2,))
def eval_on_dr_levels(rng: chex.PRNGKey, train_state: TrainState, keep_states=False):
return general_eval(
rng,
env,
env_params,
train_state,
DR_EVAL_LEVELS,
env_params.max_timesteps,
NUM_EVAL_DR_LEVELS,
keep_states=keep_states,
)
@jax.jit
def train_and_eval_step(runner_state, _):
"""
This function runs the train_step for a certain number of iterations, and then evaluates the policy.
It returns the updated train state, and a dictionary of metrics.
"""
# Train
(rng, train_state), metrics = jax.lax.scan(train_step, runner_state, None, config["eval_freq"])
# Eval
metrics["update_count"] = (
train_state.num_dr_updates + train_state.num_replay_updates + train_state.num_mutation_updates
)
vid_frequency = get_video_frequency(config, metrics["update_count"])
should_log_videos = metrics["update_count"] % vid_frequency == 0
def _compute_eval_learnability(dones, rewards, infos):
@jax.vmap
def _single(d, r, i):
learn, num_eps, num_succ = compute_learnability(config, d, r, i, config["num_eval_levels"])
return num_eps, num_succ.squeeze(-1)
num_eps, num_succ = _single(dones, rewards, infos)
num_eps, num_succ = num_eps.sum(axis=0), num_succ.sum(axis=0)
success_rate = num_succ / jnp.maximum(1, num_eps)
return success_rate * (1 - success_rate)
@jax.jit
def _get_eval(rng):
metrics = {}
rng, rng_eval = jax.random.split(rng)
(states, cum_rewards, done_idx, episode_lengths, eval_infos), (eval_dones, eval_rewards) = jax.vmap(
eval, (0, None)
)(jax.random.split(rng_eval, config["eval_num_attempts"]), train_state)
# learnability here of the holdout set:
eval_learn = _compute_eval_learnability(eval_dones, eval_rewards, eval_infos)
# Collect Metrics
eval_returns = cum_rewards.mean(axis=0) # (num_eval_levels,)
eval_solves = (eval_infos["returned_episode_solved"] * eval_dones).sum(axis=1) / jnp.maximum(
1, eval_dones.sum(axis=1)
)
eval_solves = eval_solves.mean(axis=0)
metrics["eval_returns"] = eval_returns
metrics["eval_ep_lengths"] = episode_lengths.mean(axis=0)
metrics["eval_learn"] = eval_learn
metrics["eval_solves"] = eval_solves
metrics["eval_get_max_eplen"] = (episode_lengths == env_params.max_timesteps).mean(axis=0)
metrics["episode_return_bigger_than_negative"] = (cum_rewards > -0.4).mean(axis=0)
if config["EVAL_ON_SAMPLED"]:
states_dr, cum_rewards_dr, done_idx_dr, episode_lengths_dr, infos_dr = jax.vmap(
eval_on_dr_levels, (0, None)
)(jax.random.split(rng_eval, config["eval_num_attempts"]), train_state)
eval_dr_returns = cum_rewards_dr.mean(axis=0).mean()
eval_dr_eplen = episode_lengths_dr.mean(axis=0).mean()
my_eval_dones = infos_dr["returned_episode"]
eval_dr_solves = (infos_dr["returned_episode_solved"] * my_eval_dones).sum(axis=1) / jnp.maximum(
1, my_eval_dones.sum(axis=1)
)
metrics["eval_dr_returns"] = eval_dr_returns
metrics["eval_dr_eplen"] = eval_dr_eplen
metrics["eval_dr_solve_rates"] = eval_dr_solves
return metrics, states, episode_lengths, cum_rewards
@jax.jit
def _get_videos(rng, states, episode_lengths, cum_rewards):
metrics = {"log_videos": True}
# just grab the first run
states, episode_lengths = jax.tree_util.tree_map(
lambda x: x[0], (states, episode_lengths)
) # (num_steps, num_eval_levels, ...), (num_eval_levels,)
# And one attempt
states = jax.tree_util.tree_map(lambda x: x[:, :], states)
episode_lengths = episode_lengths[:]
images = jax.vmap(jax.vmap(render_fn_eval))(
states.env_state.env_state.env_state
) # (num_steps, num_eval_levels, ...)
frames = images.transpose(
0, 1, 4, 2, 3
) # WandB expects color channel before image dimensions when dealing with animations for some reason
@jax.jit
def _get_video(rollout_batch):
states = rollout_batch[0]
images = jax.vmap(render_fn)(states) # dimensions are (steps, x, y, 3)
return (
# jax.tree.map(lambda x: x[:].transpose(0, 2, 1, 3)[:, ::-1], images).transpose(0, 3, 1, 2),
images.transpose(0, 3, 1, 2),
# images.transpose(0, 1, 4, 2, 3),
rollout_batch[1][:].argmax(),
)
# rollouts
metrics["dr_rollout"], metrics["dr_ep_len"] = _get_video(train_state.dr_last_rollout_batch)
metrics["replay_rollout"], metrics["replay_ep_len"] = _get_video(train_state.replay_last_rollout_batch)
metrics["mutation_rollout"], metrics["mutation_ep_len"] = _get_video(
train_state.mutation_last_rollout_batch
)
metrics["eval_animation"] = (frames, episode_lengths)
metrics["eval_returns_video"] = cum_rewards[0]
metrics["eval_len_video"] = episode_lengths
# Eval on sampled
return metrics
@jax.jit
def _get_dummy_videos(rng, states, episode_lengths, cum_rewards):
n_eval = config["num_eval_levels"]
nsteps = env_params.max_timesteps
nsteps2 = config["outer_rollout_steps"] * config["num_steps"]
img_size = (
env.static_env_params.screen_dim[0] // env.static_env_params.downscale,
env.static_env_params.screen_dim[1] // env.static_env_params.downscale,
)
return {
"log_videos": False,
"dr_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
"dr_ep_len": jnp.zeros((), jnp.int32),
"replay_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
"replay_ep_len": jnp.zeros((), jnp.int32),
"mutation_rollout": jnp.zeros((nsteps2, 3, *img_size), jnp.float32),
"mutation_ep_len": jnp.zeros((), jnp.int32),
# "eval_returns": jnp.zeros((n_eval,), jnp.float32),
# "eval_solves": jnp.zeros((n_eval,), jnp.float32),
# "eval_learn": jnp.zeros((n_eval,), jnp.float32),
# "eval_ep_lengths": jnp.zeros((n_eval,), jnp.int32),
"eval_animation": (
jnp.zeros((nsteps, n_eval, 3, *img_size), jnp.float32),
jnp.zeros((n_eval,), jnp.int32),
),
"eval_returns_video": jnp.zeros((n_eval,), jnp.float32),
"eval_len_video": jnp.zeros((n_eval,), jnp.int32),
}
rng, rng_eval, rng_vid = jax.random.split(rng, 3)
metrics_eval, states, episode_lengths, cum_rewards = _get_eval(rng_eval)
metrics = {
**metrics,
**metrics_eval,
**jax.lax.cond(
should_log_videos, _get_videos, _get_dummy_videos, rng_vid, states, episode_lengths, cum_rewards
),
}
max_num_images = 8
top_regret_ones = max_num_images // 2
bot_regret_ones = max_num_images - top_regret_ones
@jax.jit
def get_values(level_batch, scores):
args = jnp.argsort(scores) # low scores are at the start, high scores are at the end
low_scores = args[:bot_regret_ones]
high_scores = args[-top_regret_ones:]
low_levels = jax.tree.map(lambda x: x[low_scores], level_batch)
high_levels = jax.tree.map(lambda x: x[high_scores], level_batch)
low_scores = scores[low_scores]
high_scores = scores[high_scores]
# now concatenate:
return jax.vmap(render_fn)(
jax.tree.map(lambda x, y: jnp.concatenate([x, y], axis=0), low_levels, high_levels)
), jnp.concatenate([low_scores, high_scores], axis=0)
metrics["dr_levels"], metrics["dr_scores"] = get_values(
train_state.dr_last_level_batch, train_state.dr_last_level_batch_scores
)
metrics["replay_levels"], metrics["replay_scores"] = get_values(
train_state.replay_last_level_batch, train_state.replay_last_level_batch_scores
)
metrics["mutation_levels"], metrics["mutation_scores"] = get_values(
train_state.mutation_last_level_batch, train_state.mutation_last_level_batch_scores
)
def _t(i):
return jax.lax.select(i == 0, config["num_steps"], i)
metrics["dr_ep_len"] = _t(train_state.dr_last_rollout_batch[1][:].argmax())
metrics["replay_ep_len"] = _t(train_state.replay_last_rollout_batch[1][:].argmax())
metrics["mutation_ep_len"] = _t(train_state.mutation_last_rollout_batch[1][:].argmax())
highest_scoring_level = level_sampler.get_levels(train_state.sampler, train_state.sampler["scores"].argmax())
highest_weighted_level = level_sampler.get_levels(
train_state.sampler, level_sampler.level_weights(train_state.sampler).argmax()
)
metrics["highest_scoring_level"] = render_fn(highest_scoring_level)
metrics["highest_weighted_level"] = render_fn(highest_weighted_level)
# log_eval(metrics, train_state_to_log_dict(runner_state[1], level_sampler))
jax.debug.callback(log_eval, metrics, train_state_to_log_dict(runner_state[1], level_sampler))
return (rng, train_state), {"update_count": metrics["update_count"]}
def log_checkpoint(update_count, train_state):
if config["save_path"] is not None and config["checkpoint_save_freq"] > 1:
steps = (
int(update_count)
* int(config["num_train_envs"])
* int(config["num_steps"])
* int(config["outer_rollout_steps"])
)
# save_params_to_wandb(train_state.params, steps, config)
save_model_to_wandb(train_state, steps, config)
def train_eval_and_checkpoint_step(runner_state, _):
runner_state, metrics = jax.lax.scan(
train_and_eval_step, runner_state, xs=jnp.arange(config["checkpoint_save_freq"] // config["eval_freq"])
)
jax.debug.callback(log_checkpoint, metrics["update_count"][-1], runner_state[1])
return runner_state, metrics
# Set up the train states
rng = jax.random.PRNGKey(config["seed"])
rng_init, rng_train = jax.random.split(rng)
train_state = create_train_state(rng_init)
runner_state = (rng_train, train_state)
runner_state, metrics = jax.lax.scan(
train_eval_and_checkpoint_step,
runner_state,
xs=jnp.arange((config["num_updates"]) // (config["checkpoint_save_freq"])),
)
if config["save_path"] is not None:
# save_params_to_wandb(runner_state[1].params, config["total_timesteps"], config)
save_model_to_wandb(runner_state[1], config["total_timesteps"], config, is_final=True)
return runner_state[1]
if __name__ == "__main__":
main()
|