Spaces:
Runtime error
Runtime error
File size: 10,905 Bytes
581eeac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import functools
import jax.numpy as jnp
import flax.linen as nn
import numpy as np
from flax.linen.initializers import constant, orthogonal
from typing import List, Sequence
import distrax
import jax
from kinetix.models.actor_critic import GeneralActorCriticRNN, ScannedRNN
from kinetix.render.renderer_symbolic_entity import EntityObservation
from flax.linen.attention import MultiHeadDotProductAttention
class Gating(nn.Module):
# code taken from https://github.com/dhruvramani/Transformers-RL/blob/master/layers.py
d_input: int
bg: float = 0.0
@nn.compact
def __call__(self, x, y):
r = jax.nn.sigmoid(nn.Dense(self.d_input, use_bias=False)(y) + nn.Dense(self.d_input, use_bias=False)(x))
z = jax.nn.sigmoid(
nn.Dense(self.d_input, use_bias=False)(y)
+ nn.Dense(self.d_input, use_bias=False)(x)
- self.param("gating_bias", constant(self.bg), (self.d_input,))
)
h = jnp.tanh(nn.Dense(self.d_input, use_bias=False)(y) + nn.Dense(self.d_input, use_bias=False)(r * x))
g = (1 - z) * x + (z * h)
return g
class transformer_layer(nn.Module):
num_heads: int
out_features: int
qkv_features: int
gating: bool = False
gating_bias: float = 0.0
def setup(self):
self.attention1 = MultiHeadDotProductAttention(
num_heads=self.num_heads, qkv_features=self.qkv_features, out_features=self.out_features
)
self.ln1 = nn.LayerNorm()
self.dense1 = nn.Dense(self.out_features)
self.dense2 = nn.Dense(self.out_features)
self.ln2 = nn.LayerNorm()
if self.gating:
self.gate1 = Gating(self.out_features, self.gating_bias)
self.gate2 = Gating(self.out_features, self.gating_bias)
def __call__(self, queries: jnp.ndarray, mask: jnp.ndarray):
# After reading the paper, this is what I think we should do:
# First layernorm, then do attention
queries_n = self.ln1(queries)
y = self.attention1(queries_n, mask=mask)
if self.gating: # and gate
y = self.gate1(queries, jax.nn.relu(y))
else:
y = queries + y
# Dense after norming, crucially no relu.
e = self.dense1(self.ln2(y))
if self.gating: # and gate again
# This may be the wrong way around
e = self.gate2(y, jax.nn.relu(e))
else:
e = y + e
return e
class Transformer(nn.Module):
encoder_size: int
num_heads: int
qkv_features: int
num_layers: int
gating: bool = False
gating_bias: float = 0.0
def setup(self):
# self.encoder = nn.Dense(self.encoder_size)
# self.positional_encoding = PositionalEncoding(self.encoder_size, max_len=self.max_len)
self.tf_layers = [
transformer_layer(
num_heads=self.num_heads,
qkv_features=self.qkv_features,
out_features=self.encoder_size,
gating=self.gating,
gating_bias=self.gating_bias,
)
for _ in range(self.num_layers)
]
self.joint_layers = [nn.Dense(self.encoder_size) for _ in range(self.num_layers)]
self.thruster_layers = [nn.Dense(self.encoder_size) for _ in range(self.num_layers)]
# self.pos_emb=PositionalEmbedding(self.encoder_size)
def __call__(
self,
shape_embeddings: jnp.ndarray,
shape_attention_mask,
joint_embeddings,
joint_mask,
joint_indexes,
thruster_embeddings,
thruster_mask,
thruster_indexes,
):
# forward eval so obs is only one timestep
# encoded = self.encoder(shape_embeddings)
# pos_embed=self.pos_emb(jnp.arange(1+memories.shape[-3],-1,-1))[:1+memories.shape[-3]]
for tf_layer, joint_layer, thruster_layer in zip(self.tf_layers, self.joint_layers, self.thruster_layers):
# Do attention
shape_embeddings = tf_layer(shape_embeddings, shape_attention_mask)
# Joints
# T, B, 2J, (2SE + JE)
@jax.vmap
@jax.vmap
def do_index2(to_ind, ind):
return to_ind[ind]
joint_shape_embeddings = jnp.concatenate(
[
do_index2(shape_embeddings, joint_indexes[..., 0]),
do_index2(shape_embeddings, joint_indexes[..., 1]),
joint_embeddings,
],
axis=-1,
)
shape_joint_entity_delta = joint_layer(joint_shape_embeddings) * joint_mask[..., None]
@jax.vmap
@jax.vmap
def add2(addee, index, adder):
return addee.at[index].add(adder)
# Thrusters
thruster_shape_embeddings = jnp.concatenate(
[
do_index2(shape_embeddings, thruster_indexes),
thruster_embeddings,
],
axis=-1,
)
shape_thruster_entity_delta = thruster_layer(thruster_shape_embeddings) * thruster_mask[..., None]
shape_embeddings = add2(shape_embeddings, joint_indexes[..., 0], shape_joint_entity_delta)
shape_embeddings = add2(shape_embeddings, thruster_indexes, shape_thruster_entity_delta)
return shape_embeddings
class ActorCriticTransformer(nn.Module):
action_dim: Sequence[int]
fc_layer_width: int
action_mode: str
hybrid_action_continuous_dim: int
multi_discrete_number_of_dims_per_distribution: List[int]
transformer_size: int
transformer_encoder_size: int
transformer_depth: int
fc_layer_depth: int
num_heads: int
activation: str
aggregate_mode: str # "dummy" or "mean" or "dummy_and_mean"
full_attention_mask: bool # if true, only mask out inactives, and have everything attend to everything else
add_generator_embedding: bool = False
generator_embedding_number_of_timesteps: int = 10
recurrent: bool = True
@nn.compact
def __call__(self, hidden, x):
if self.activation == "relu":
activation = nn.relu
else:
activation = nn.tanh
og_obs, dones = x
if self.add_generator_embedding:
obs = og_obs.obs
else:
obs = og_obs
# obs._ is [T, B, N, L]
# B - batch size
# T - time
# N - number of things
# L - unembedded entity size
obs: EntityObservation
def _single_encoder(features, entity_id, concat=True):
# assume two entity types
num_to_remove = 1 if concat else 0
embedding = activation(
nn.Dense(
self.transformer_encoder_size - num_to_remove,
kernel_init=orthogonal(np.sqrt(2)),
bias_init=constant(0.0),
)(features)
)
if concat:
id_1h = jnp.zeros((*embedding.shape[:3], 1)).at[:, :, :, entity_id].set(entity_id)
return jnp.concatenate([embedding, id_1h], axis=-1)
else:
return embedding
circle_encodings = _single_encoder(obs.circles, 0)
polygon_encodings = _single_encoder(obs.polygons, 1)
joint_encodings = _single_encoder(obs.joints, -1, False)
thruster_encodings = _single_encoder(obs.thrusters, -1, False)
# Size of this is something like (T, B, N, K) (time, batch, num_entities, embedding_size)
# T, B, M, K
shape_encodings = jnp.concatenate([polygon_encodings, circle_encodings], axis=2)
# T, B, M
shape_mask = jnp.concatenate([obs.polygon_mask, obs.circle_mask], axis=2)
def mask_out_inactives(flat_active_mask, matrix_attention_mask):
matrix_attention_mask = matrix_attention_mask & (flat_active_mask[:, None]) & (flat_active_mask[None, :])
return matrix_attention_mask
joint_indexes = obs.joint_indexes
thruster_indexes = obs.thruster_indexes
if self.aggregate_mode == "dummy" or self.aggregate_mode == "dummy_and_mean":
T, B, _, K = circle_encodings.shape
dummy = jnp.ones((T, B, 1, K))
shape_encodings = jnp.concatenate([dummy, shape_encodings], axis=2)
shape_mask = jnp.concatenate(
[jnp.ones((T, B, 1), dtype=bool), shape_mask],
axis=2,
)
N = obs.attention_mask.shape[-1]
overall_mask = (
jnp.ones((T, B, obs.attention_mask.shape[2], N + 1, N + 1), dtype=bool)
.at[:, :, :, 1:, 1:]
.set(obs.attention_mask)
)
overall_mask = jax.vmap(jax.vmap(mask_out_inactives))(shape_mask, overall_mask)
# To account for the dummy entity
joint_indexes = joint_indexes + 1
thruster_indexes = thruster_indexes + 1
else:
overall_mask = obs.attention_mask
if self.full_attention_mask:
overall_mask = jnp.ones(overall_mask.shape, dtype=bool)
overall_mask = jax.vmap(jax.vmap(mask_out_inactives))(shape_mask, overall_mask)
# Now do attention on these
embedding = Transformer(
num_layers=self.transformer_depth,
num_heads=self.num_heads,
qkv_features=self.transformer_size,
encoder_size=self.transformer_encoder_size,
gating=True,
gating_bias=0.0,
)(
shape_encodings,
jnp.repeat(overall_mask, repeats=self.num_heads // overall_mask.shape[2], axis=2),
joint_encodings,
obs.joint_mask,
joint_indexes,
thruster_encodings,
obs.thruster_mask,
thruster_indexes,
) # add the extra dimension for the heads
if self.aggregate_mode == "mean" or self.aggregate_mode == "dummy_and_mean":
embedding = jnp.mean(embedding, axis=2, where=shape_mask[..., None])
else:
embedding = embedding[:, :, 0] # Take the dummy entity as the embedding of the entire scene.
return GeneralActorCriticRNN(
action_dim=self.action_dim,
fc_layer_depth=self.fc_layer_depth,
fc_layer_width=self.fc_layer_width,
action_mode=self.action_mode,
hybrid_action_continuous_dim=self.hybrid_action_continuous_dim,
multi_discrete_number_of_dims_per_distribution=self.multi_discrete_number_of_dims_per_distribution,
add_generator_embedding=self.add_generator_embedding,
generator_embedding_number_of_timesteps=self.generator_embedding_number_of_timesteps,
recurrent=self.recurrent,
)(hidden, og_obs, embedding, dones, activation)
|