Update app.py
Browse files
app.py
CHANGED
@@ -17,11 +17,12 @@ token=""
|
|
17 |
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
18 |
emb = "sentence-transformers/all-mpnet-base-v2"
|
19 |
hf = HuggingFaceEmbeddings(model_name=emb)
|
20 |
-
db = Chroma()
|
21 |
#db.persist()
|
22 |
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
|
23 |
#raw_documents = TextLoader('state_of_the_union.txt').load()
|
24 |
def embed_fn(inp):
|
|
|
25 |
text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=10)
|
26 |
documents = text_splitter.split_text(inp)
|
27 |
out_emb= hf.embed_documents(documents)
|
@@ -58,6 +59,7 @@ def read_pdf(pdf_path):
|
|
58 |
text = f'{text}\n{page.extract_text()}'
|
59 |
return text
|
60 |
def run_llm(input_text,history):
|
|
|
61 |
MAX_TOKENS=20000
|
62 |
try:
|
63 |
qur= hf.embed_query(input_text)
|
|
|
17 |
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
18 |
emb = "sentence-transformers/all-mpnet-base-v2"
|
19 |
hf = HuggingFaceEmbeddings(model_name=emb)
|
20 |
+
#db = Chroma()
|
21 |
#db.persist()
|
22 |
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
|
23 |
#raw_documents = TextLoader('state_of_the_union.txt').load()
|
24 |
def embed_fn(inp):
|
25 |
+
db=Chroma()
|
26 |
text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=10)
|
27 |
documents = text_splitter.split_text(inp)
|
28 |
out_emb= hf.embed_documents(documents)
|
|
|
59 |
text = f'{text}\n{page.extract_text()}'
|
60 |
return text
|
61 |
def run_llm(input_text,history):
|
62 |
+
db=Chroma()
|
63 |
MAX_TOKENS=20000
|
64 |
try:
|
65 |
qur= hf.embed_query(input_text)
|