Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
# Load the Nomic embedding model | |
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) | |
def get_embedding(text): | |
"""Generate an embedding for the input text using Nomic encoder.""" | |
if not text.strip(): | |
return "Please provide some text." | |
# Generate embedding | |
embedding = model.encode([text])[0] # Get the first (and only) embedding | |
# Return embedding as list (more user-friendly in the UI) | |
return embedding.tolist() | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=get_embedding, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text to embed..."), | |
outputs=gr.JSON(), | |
title="Text Embedding with Nomic Encoder", | |
description="Enter text to get its embedding vector using the Nomic Encoder model." | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch() |