nomic-embedding / app.py
AreejMehboob's picture
Update app.py
6b43b0b verified
raw
history blame
4.21 kB
# import os
# import gradio as gr
# import numpy as np
# from transformers import AutoTokenizer, AutoModel
# import time
# # :white_check_mark: Setup environment
# os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
# hf_token = os.environ.get("HF_TOKEN")
# if not hf_token:
# raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
# # :white_check_mark: Load model and tokenizer
# text_tokenizer = AutoTokenizer.from_pretrained(
# "nomic-ai/nomic-embed-text-v1.5",
# trust_remote_code=True,
# token=hf_token,
# cache_dir=os.environ["HF_HOME"]
# )
# text_model = AutoModel.from_pretrained(
# "nomic-ai/nomic-embed-text-v1.5",
# trust_remote_code=True,
# token=hf_token,
# cache_dir=os.environ["HF_HOME"]
# )
# # :white_check_mark: Embedding function
# def get_text_embeddings(text):
# """
# Converts input text into a dense embedding using the Nomic embedding model.
# These embeddings are used to query Qdrant for semantically relevant document chunks.
# """
# inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
# outputs = text_model(**inputs)
# embeddings = outputs.last_hidden_state.mean(dim=1)
# return embeddings[0].detach().numpy()
# # :white_check_mark: Gradio interface function
# def embed_text_interface(text):
# strt_time=time.time()
# embedding = get_text_embeddings(text)
# print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
# return str(embedding)
# # :white_check_mark: Gradio UI
# interface = gr.Interface(
# fn=embed_text_interface,
# inputs=gr.Textbox(label="Enter text to embed", lines=5),
# outputs=gr.Textbox(label="Embedding vector"),
# title="Text Embedding with Nomic AI",
# description="Enter some text, and get its embedding vector using Nomic's embedding model."
# )
# # :white_check_mark: Launch the app
# if __name__ == "__main__":
# interface.launch()
import os
import gradio as gr
import numpy as np
from transformers import AutoTokenizer, AutoModel
import time
import torch
# :white_check_mark: Setup environment
os.makedirs(os.environ.get("HF_HOME", "./hf_cache"), exist_ok=True)
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise EnvironmentError(":x: Environment variable HF_TOKEN is not set.")
# Check for GPU availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# :white_check_mark: Load model and tokenizer
text_tokenizer = AutoTokenizer.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
token=hf_token,
cache_dir=os.environ["HF_HOME"]
)
text_model = AutoModel.from_pretrained(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
token=hf_token,
cache_dir=os.environ["HF_HOME"]
).to(device) # Move model to GPU if available
# :white_check_mark: Embedding function
def get_text_embeddings(text):
"""
Converts input text into a dense embedding using the Nomic embedding model.
These embeddings are used to query Qdrant for semantically relevant document chunks.
"""
inputs = text_tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(device) # Move inputs to same device as model
with torch.no_grad(): # Disable gradient calculation for inference
outputs = text_model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings[0].cpu().numpy() # Move back to CPU for numpy conversion
# :white_check_mark: Gradio interface function
def embed_text_interface(text):
strt_time = time.time()
embedding = get_text_embeddings(text)
print(f"Total time taken by nomic to embed: {time.time()-strt_time}")
return str(embedding)
# :white_check_mark: Gradio UI
interface = gr.Interface(
fn=embed_text_interface,
inputs=gr.Textbox(label="Enter text to embed", lines=5),
outputs=gr.Textbox(label="Embedding vector"),
title="Text Embedding with Nomic AI",
description="Enter some text, and get its embedding vector using Nomic's embedding model."
)
# :white_check_mark: Launch the app
if __name__ == "__main__":
interface.launch()