Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,201 @@
|
|
1 |
-
import gradio as gr
|
2 |
from pyvis.network import Network
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def create_knowledge_graph():
|
5 |
-
# Создаем граф с pyvis
|
6 |
-
net = Network(
|
7 |
-
height="600px",
|
8 |
-
width="100%",
|
9 |
-
bgcolor="#222222",
|
10 |
-
font_color="white",
|
11 |
-
cdn_resources="in_line" # Встраиваем JS/CSS в HTML
|
12 |
-
)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
]
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
<iframe
|
40 |
-
srcdoc="{html_content_escaped}"
|
41 |
-
width="100%"
|
42 |
-
height="600"
|
43 |
-
frameborder="0"
|
44 |
-
></iframe>
|
45 |
-
'''
|
46 |
-
return iframe_code
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
58 |
-
|
59 |
-
fn=
|
60 |
-
inputs=
|
61 |
-
outputs=
|
62 |
)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
1 |
from pyvis.network import Network
|
2 |
+
import pandas as pd
|
3 |
+
import pymorphy3
|
4 |
+
import re
|
5 |
+
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Инициализация pymorphy3 (лемматизатор)
|
9 |
+
morph = pymorphy3.MorphAnalyzer()
|
10 |
+
|
11 |
+
# Функция токенизации и лемматизации
|
12 |
+
def tokenize_and_lemmatize(text):
|
13 |
+
text = re.sub(r'[^\w\s]', '', text.lower()) # Удаляем пунктуацию, приводим к нижнему регистру
|
14 |
+
words = text.split()
|
15 |
+
return [morph.parse(word)[0].normal_form for word in words]
|
16 |
+
|
17 |
+
# Словарь ключевых слов для каждого сегмента (каждое слово в начальной форме)
|
18 |
+
personalization_keywords = {
|
19 |
+
"Поколение X": ["комиссия", "визит", "снижение", "ставка", "бесплатно", "экономия"],
|
20 |
+
"Поколение Y": ["онлайн", "цифровой", "бонус", "лимит", "qr", "sberpay"],
|
21 |
+
"Поколение Z": ["быстрота", "мгновенно", "минута", "оперативно", "решение"],
|
22 |
+
"Пол Женский": ["комфорт", "удобство", "забота", "легкость", "терминал"],
|
23 |
+
"ОПФ ИП": ["эффективность", "комиссия", "снижение", "ставка", "онлайн", "быстрота", "оптимизация"],
|
24 |
+
"ОПФ ООО": ["удобство", "комиссия", "открытие", "онлайн", "легкость", "автоматизация"],
|
25 |
+
"Психотип Конструктор": ["оптимизация", "снижение", "ставка", "комиссия", "льготный", "период", "выгодно", "настройка"],
|
26 |
+
"Пол Мужской": ["динамичность", "быстрота", "лимит", "решение", "активность", "оптимизация"],
|
27 |
+
"Стадия бизнеса Новичок": ["доступность", "простота", "низкий", "порог", "комиссия", "легкость"],
|
28 |
+
"Стадия бизнеса Профи": ["профессионализм", "комиссия", "снижение", "ставка", "оптимизация", "эффективность", "быстрота"],
|
29 |
+
"Психотип Рефлектор": ["премиальность", "эксклюзив", "бизнес", "зал", "акция", "привилегия", "статус"],
|
30 |
+
"Психотип Центрист": ["универсальность", "стандарт", "комиссия", "бесплатно", "надежность"],
|
31 |
+
"Стадия бизнеса Эксперт": ["максимизация", "высокий", "лимит", "снижение", "ставка", "комиссия", "выгода", "оптимизация"]
|
32 |
+
}
|
33 |
+
|
34 |
+
# Функция для классификации одного текста преимущества
|
35 |
+
def classify_advantage(text, keywords_dict):
|
36 |
+
"""
|
37 |
+
Возвращает список кортежей вида:
|
38 |
+
[
|
39 |
+
(category, { 'count': int, 'matched_lemmas': set([...]) }),
|
40 |
+
...
|
41 |
]
|
42 |
+
отсортированных по убыванию count.
|
43 |
+
"""
|
44 |
+
lemmas = tokenize_and_lemmatize(text)
|
45 |
+
category_matches = {}
|
46 |
|
47 |
+
# Проходим по всем категориям и считаем число совпадений лемм
|
48 |
+
for category, keywords in keywords_dict.items():
|
49 |
+
matches = set(lemmas) & set(keywords) # Пересечение множеств
|
50 |
+
if matches:
|
51 |
+
category_matches[category] = {
|
52 |
+
'count': len(matches),
|
53 |
+
'matched_lemmas': matches
|
54 |
+
}
|
55 |
|
56 |
+
# Сортируем категории по количеству совпадений (по убыванию)
|
57 |
+
sorted_matches = sorted(
|
58 |
+
category_matches.items(),
|
59 |
+
key=lambda x: x[1]['count'],
|
60 |
+
reverse=True
|
61 |
+
)
|
62 |
+
return sorted_matches
|
63 |
|
64 |
+
# Глобальная переменная для хранения DataFrame
|
65 |
+
df = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
def load_excel(file):
|
68 |
+
"""
|
69 |
+
Функция для загрузки Excel-файла.
|
70 |
+
Возвращает список уникальных продуктов и сообщение о статусе загрузки.
|
71 |
+
"""
|
72 |
+
global df
|
73 |
+
if file is None:
|
74 |
+
return [], "Файл не загружен. Загрузите Excel-файл."
|
75 |
+
try:
|
76 |
+
# Читаем Excel в DataFrame
|
77 |
+
df = pd.read_excel(file.name, usecols=["Продукт", "Преимущество"])
|
78 |
+
unique_products = df["Продукт"].unique().tolist()
|
79 |
+
return unique_products, "Файл успешно загружен!"
|
80 |
+
except Exception as e:
|
81 |
+
return [], f"Ошибка при чтении файла: {str(e)}"
|
82 |
+
|
83 |
+
|
84 |
+
def analyze(product):
|
85 |
+
"""
|
86 |
+
Функция, вызываемая при выборе продукта в выпадающем списке.
|
87 |
+
Анализирует все преимущества, соответствующие данному продукту,
|
88 |
+
и возвращает подробный отчёт и визуализацию графа.
|
89 |
+
"""
|
90 |
+
global df
|
91 |
+
if df is None:
|
92 |
+
return "Сначала загрузите файл.", None
|
93 |
+
|
94 |
+
if not product:
|
95 |
+
return "Пожалуйста, выберите продукт.", None
|
96 |
|
97 |
+
# Фильтруем DataFrame по выбранному продукту
|
98 |
+
product_advantages = df[df["Продукт"] == product]["Преимущество"]
|
99 |
+
|
100 |
+
# Создаём граф
|
101 |
+
graph_html = create_category_graph(product, product_advantages, personalization_keywords)
|
102 |
+
|
103 |
+
# Собираем результаты
|
104 |
+
results = []
|
105 |
+
for advantage in product_advantages:
|
106 |
+
matches = classify_advantage(advantage, personalization_keywords)
|
107 |
+
# Формируем текстовый отчёт по каждому преимуществу
|
108 |
+
advantage_text = f"**Преимущество**: {advantage}\n\n"
|
109 |
+
advantage_text += f"**Леммы**: {tokenize_and_lemmatize(advantage)}\n\n"
|
110 |
+
advantage_text += "**Совпадающие категории:**\n"
|
111 |
+
|
112 |
+
if matches:
|
113 |
+
for category, data in matches:
|
114 |
+
# Выводим и количество совпадений, и сами совпавшие леммы
|
115 |
+
matched_lemmas_str = ", ".join(sorted(data['matched_lemmas']))
|
116 |
+
advantage_text += f"- {category}: {data['count']} совпадений (леммы: {matched_lemmas_str})\n"
|
117 |
+
else:
|
118 |
+
advantage_text += "- Нет совпадений.\n"
|
119 |
+
advantage_text += "\n---\n"
|
120 |
+
results.append(advantage_text)
|
121 |
|
122 |
+
if not results:
|
123 |
+
return "Для выбранного продукта не найдено преимуществ.", None
|
124 |
+
|
125 |
+
return "\n".join(results), graph_html
|
126 |
+
|
127 |
+
|
128 |
+
def create_category_graph(product, advantages, personalization_keywords):
|
129 |
+
"""
|
130 |
+
Создаёт граф связей между продуктом, его преимуществами и категориями персонализации.
|
131 |
+
Возвращает HTML-код для отображения графа в iframe.
|
132 |
+
"""
|
133 |
+
net = Network(notebook=True, height="500px", width="100%", directed=True, cdn_resources='in_line') # Используем встроенные ресурсы
|
134 |
+
|
135 |
+
# Добавляем узел для продукта
|
136 |
+
net.add_node(product, label=product, color="lightblue", size=30)
|
137 |
+
|
138 |
+
# Проходим по всем преимуществам продукта
|
139 |
+
for advantage in advantages:
|
140 |
+
# Добавляем узел для преимущества
|
141 |
+
net.add_node(advantage, label=advantage, color="orange", size=20)
|
142 |
+
net.add_edge(product, advantage) # Связь продукта с преимуществом
|
143 |
+
|
144 |
+
# Анализируем преимущество и добавляем связи с категориями
|
145 |
+
matches = classify_advantage(advantage, personalization_keywords)
|
146 |
+
for category, data in matches:
|
147 |
+
net.add_node(category, label=category, color="green", size=15)
|
148 |
+
net.add_edge(advantage, category) # Связь преимущества с категорией
|
149 |
+
|
150 |
+
# Генерируем HTML-код для графа
|
151 |
+
html = net.generate_html() #notebook=False)
|
152 |
+
|
153 |
+
# Заменяем одинарные кавычки на двойные
|
154 |
+
html = html.replace("'", '"')
|
155 |
+
|
156 |
+
# Возвращаем iframe с HTML-кодом графа
|
157 |
+
return f"""
|
158 |
+
<iframe
|
159 |
+
width="100%"
|
160 |
+
height="600"
|
161 |
+
frameborder="0"
|
162 |
+
srcdoc='{html}'>
|
163 |
+
</iframe>
|
164 |
+
"""
|
165 |
+
|
166 |
+
with gr.Blocks() as demo:
|
167 |
+
gr.Markdown("## Классификация преимуществ по признакам персонализации")
|
168 |
+
gr.Markdown("**Шаг 1:** Загрузите Excel-файл с двумя столбцами: 'Продукт' и 'Преимущество'.")
|
169 |
+
|
170 |
+
file_input = gr.File(label="Загрузите Excel-файл", file_types=[".xlsx"])
|
171 |
+
load_button = gr.Button("Загрузить файл")
|
172 |
+
load_status = gr.Markdown("")
|
173 |
+
|
174 |
+
gr.Markdown("**Шаг 2:** Выберите продукт из списка (по умолчанию ничего не выбрано).")
|
175 |
+
product_dropdown = gr.Dropdown(choices=[], label="Продукты", value=None)
|
176 |
+
analyze_button = gr.Button("Анализировать")
|
177 |
+
|
178 |
+
output_text = gr.Markdown("")
|
179 |
+
output_graph = gr.HTML(label="Визуализация графа")
|
180 |
+
|
181 |
+
# Логика при нажатии "Загрузить файл"
|
182 |
+
def on_file_upload(file):
|
183 |
+
unique_products, status_message = load_excel(file)
|
184 |
+
return gr.update(choices=unique_products), status_message
|
185 |
+
|
186 |
+
load_button.click(
|
187 |
+
fn=on_file_upload,
|
188 |
+
inputs=file_input,
|
189 |
+
outputs=[product_dropdown, load_status]
|
190 |
+
)
|
191 |
|
192 |
+
# Логика при нажатии "Анализировать"
|
193 |
+
analyze_button.click(
|
194 |
+
fn=analyze,
|
195 |
+
inputs=product_dropdown,
|
196 |
+
outputs=[output_text, output_graph]
|
197 |
)
|
198 |
|
199 |
+
# Запускаем демо
|
200 |
+
if __name__ == "__main__":
|
201 |
+
demo.launch(debug=True)
|