Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,111 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
|
|
26 |
prompt,
|
27 |
negative_prompt,
|
28 |
seed,
|
29 |
-
randomize_seed,
|
30 |
width,
|
31 |
height,
|
32 |
guidance_scale,
|
33 |
num_inference_steps,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
"An astronaut riding a green horse",
|
57 |
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
|
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
@@ -64,91 +113,165 @@ css = """
|
|
64 |
}
|
65 |
"""
|
66 |
|
|
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown("
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
-
value=
|
109 |
)
|
110 |
-
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
-
value=
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
122 |
minimum=0.0,
|
123 |
-
maximum=
|
124 |
step=0.1,
|
125 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
if __name__ == "__main__":
|
154 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
from peft import PeftModel
|
6 |
+
import re
|
7 |
|
8 |
+
# Устройство и тип данных
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
|
12 |
+
# Регулярное выражение для проверки корректности модели
|
13 |
+
VALID_REPO_ID_REGEX = re.compile(r"^[a-zA-Z0-9._\-]+/[a-zA-Z0-9._\-]+$")
|
14 |
+
def is_valid_repo_id(repo_id):
|
15 |
+
return bool(VALID_REPO_ID_REGEX.match(repo_id)) and not repo_id.endswith(('-', '.'))
|
|
|
|
|
|
|
16 |
|
17 |
+
# Базовые константы
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
+
# Изначально загружаем модель по умолчанию
|
22 |
+
model_repo_id = "CompVis/stable-diffusion-v1-4"
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, safety_checker=None).to(device)
|
24 |
+
|
25 |
+
# Попробуем подгрузить LoRA-модификации
|
26 |
+
try:
|
27 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "./unet")
|
28 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "./text_encoder")
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Не удалось подгрузить LoRA по умолчанию: {e}")
|
31 |
|
|
|
32 |
def infer(
|
33 |
+
model,
|
34 |
prompt,
|
35 |
negative_prompt,
|
36 |
seed,
|
|
|
37 |
width,
|
38 |
height,
|
39 |
guidance_scale,
|
40 |
num_inference_steps,
|
41 |
+
use_controlnet,
|
42 |
+
control_strength,
|
43 |
+
controlnet_mode,
|
44 |
+
controlnet_image,
|
45 |
+
use_ip_adapter,
|
46 |
+
ip_adapter_scale,
|
47 |
+
ip_adapter_image,
|
48 |
progress=gr.Progress(track_tqdm=True),
|
49 |
):
|
50 |
+
"""
|
51 |
+
Функция генерации изображения.
|
52 |
+
Параметры use_controlnet, control_strength, controlnet_mode, controlnet_image,
|
53 |
+
use_ip_adapter, ip_adapter_scale, ip_adapter_image — это заглушки для демонстрации UI.
|
54 |
+
"""
|
55 |
|
56 |
+
global model_repo_id, pipe
|
57 |
|
58 |
+
# Если пользователь ввёл другую модель, пробуем её загрузить с нуля
|
59 |
+
if model != model_repo_id:
|
60 |
+
if not is_valid_repo_id(model):
|
61 |
+
raise gr.Error(f"Некорректный идентификатор модели: '{model}'. Проверьте название.")
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
try:
|
64 |
+
new_pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device)
|
65 |
+
# Повторно подгружаем LoRA
|
66 |
+
try:
|
67 |
+
new_pipe.unet = PeftModel.from_pretrained(new_pipe.unet, "./unet")
|
68 |
+
new_pipe.text_encoder = PeftModel.from_pretrained(new_pipe.text_encoder, "./text_encoder")
|
69 |
+
except Exception as e:
|
70 |
+
raise gr.Error(f"Не удалось подгрузить LoRA: {e}")
|
71 |
+
|
72 |
+
# Обновляем глобальные переменные
|
73 |
+
pipe = new_pipe
|
74 |
+
model_repo_id = model
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
raise gr.Error(f"Не удалось загрузить модель '{model}'.\nОшибка: {e}")
|
78 |
+
|
79 |
+
# Создаём генератор случайных чисел для детерминированности
|
80 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
81 |
|
82 |
+
# --- Здесь должна быть интеграция ControlNet, IP-adapter и т.д. ---
|
83 |
+
# Для демонстрации интерфейса просто вызываем pipe как обычно.
|
84 |
+
# ------------------------------------------------------------------
|
85 |
|
86 |
+
try:
|
87 |
+
image = pipe(
|
88 |
+
prompt=prompt,
|
89 |
+
negative_prompt=negative_prompt,
|
90 |
+
guidance_scale=guidance_scale,
|
91 |
+
num_inference_steps=num_inference_steps,
|
92 |
+
width=width,
|
93 |
+
height=height,
|
94 |
+
generator=generator,
|
95 |
+
).images[0]
|
96 |
+
except Exception as e:
|
97 |
+
raise gr.Error(f"Ошибка при генерации изображения: {e}")
|
98 |
+
|
99 |
+
return image, seed
|
100 |
+
|
101 |
+
# Примеры для удобного тестирования
|
102 |
examples = [
|
103 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
104 |
"An astronaut riding a green horse",
|
105 |
"A delicious ceviche cheesecake slice",
|
106 |
]
|
107 |
|
108 |
+
# Дополнительный CSS для оформления
|
109 |
css = """
|
110 |
#col-container {
|
111 |
margin: 0 auto;
|
|
|
113 |
}
|
114 |
"""
|
115 |
|
116 |
+
# Создаём Gradio-приложение
|
117 |
with gr.Blocks(css=css) as demo:
|
118 |
with gr.Column(elem_id="col-container"):
|
119 |
+
gr.Markdown("# Text-to-Image App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Поле для ввода/смены модели
|
122 |
+
model = gr.Textbox(
|
123 |
+
label="Model",
|
124 |
+
value="CompVis/stable-diffusion-v1-4", # Значение по умолчанию
|
125 |
+
interactive=True
|
126 |
+
)
|
127 |
|
128 |
+
# Основные поля для Prompt и Negative Prompt
|
129 |
+
prompt = gr.Text(
|
130 |
+
label="Prompt",
|
131 |
+
show_label=False,
|
132 |
+
max_lines=1,
|
133 |
+
placeholder="Enter your prompt",
|
134 |
+
container=False,
|
135 |
+
)
|
136 |
+
negative_prompt = gr.Text(
|
137 |
+
label="Negative prompt",
|
138 |
+
max_lines=1,
|
139 |
+
placeholder="Enter a negative prompt",
|
140 |
+
visible=True,
|
141 |
+
)
|
142 |
|
143 |
+
# Слайдер для выбора seed
|
144 |
+
seed = gr.Slider(
|
145 |
+
label="Seed",
|
146 |
+
minimum=0,
|
147 |
+
maximum=MAX_SEED,
|
148 |
+
step=1,
|
149 |
+
value=42,
|
150 |
+
)
|
151 |
|
152 |
+
# Слайдеры для guidance_scale и num_inference_steps
|
153 |
+
guidance_scale = gr.Slider(
|
154 |
+
label="Guidance scale",
|
155 |
+
minimum=0.0,
|
156 |
+
maximum=10.0,
|
157 |
+
step=0.1,
|
158 |
+
value=7.0,
|
159 |
+
)
|
160 |
+
num_inference_steps = gr.Slider(
|
161 |
+
label="Number of inference steps",
|
162 |
+
minimum=1,
|
163 |
+
maximum=50,
|
164 |
+
step=1,
|
165 |
+
value=20,
|
166 |
+
)
|
167 |
|
168 |
+
# Кнопка запуска
|
169 |
+
run_button = gr.Button("Run", variant="primary")
|
170 |
|
171 |
+
# Поле для отображения результата
|
172 |
+
result = gr.Image(label="Result", show_label=False)
|
173 |
+
|
174 |
+
# Продвинутые настройки (Accordion)
|
175 |
+
with gr.Accordion("Advanced Settings", open=False):
|
176 |
with gr.Row():
|
177 |
width = gr.Slider(
|
178 |
label="Width",
|
179 |
minimum=256,
|
180 |
maximum=MAX_IMAGE_SIZE,
|
181 |
step=32,
|
182 |
+
value=512,
|
183 |
)
|
|
|
184 |
height = gr.Slider(
|
185 |
label="Height",
|
186 |
minimum=256,
|
187 |
maximum=MAX_IMAGE_SIZE,
|
188 |
step=32,
|
189 |
+
value=512,
|
190 |
)
|
191 |
|
192 |
+
# --- Дополнительные элементы для ControlNet ---
|
193 |
+
use_controlnet = gr.Checkbox(label="Use ControlNet", value=False)
|
194 |
+
with gr.Group(visible=False) as controlnet_group:
|
195 |
+
control_strength = gr.Slider(
|
196 |
+
label="ControlNet Strength",
|
197 |
minimum=0.0,
|
198 |
+
maximum=2.0,
|
199 |
step=0.1,
|
200 |
+
value=1.0,
|
201 |
+
)
|
202 |
+
controlnet_mode = gr.Dropdown(
|
203 |
+
label="ControlNet Mode",
|
204 |
+
choices=["edge_detection", "pose_estimation", "depth_estimation"],
|
205 |
+
value="edge_detection",
|
206 |
+
)
|
207 |
+
controlnet_image = gr.Image(
|
208 |
+
label="ControlNet Image",
|
209 |
+
source="upload",
|
210 |
+
type="pil"
|
211 |
)
|
212 |
|
213 |
+
# Функция для управления видимостью группы ControlNet
|
214 |
+
def update_controlnet_group(use_controlnet):
|
215 |
+
return {"visible": use_controlnet}
|
216 |
+
|
217 |
+
use_controlnet.change(
|
218 |
+
update_controlnet_group,
|
219 |
+
inputs=[use_controlnet],
|
220 |
+
outputs=[controlnet_group]
|
221 |
+
)
|
222 |
+
|
223 |
+
# --- Дополнительные элементы для IP-adapter ---
|
224 |
+
use_ip_adapter = gr.Checkbox(label="Use IP-adapter", value=False)
|
225 |
+
with gr.Group(visible=False) as ip_adapter_group:
|
226 |
+
ip_adapter_scale = gr.Slider(
|
227 |
+
label="IP-adapter Scale",
|
228 |
+
minimum=0.0,
|
229 |
+
maximum=2.0,
|
230 |
+
step=0.1,
|
231 |
+
value=1.0,
|
232 |
+
)
|
233 |
+
ip_adapter_image = gr.Image(
|
234 |
+
label="IP-adapter Image",
|
235 |
+
source="upload",
|
236 |
+
type="pil"
|
237 |
)
|
238 |
|
239 |
+
# Функция для управления видимостью группы IP-adapter
|
240 |
+
def update_ip_adapter_group(use_ip_adapter):
|
241 |
+
return {"visible": use_ip_adapter}
|
242 |
+
|
243 |
+
use_ip_adapter.change(
|
244 |
+
update_ip_adapter_group,
|
245 |
+
inputs=[use_ip_adapter],
|
246 |
+
outputs=[ip_adapter_group]
|
247 |
+
)
|
248 |
+
|
249 |
+
# Примеры
|
250 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
# Связка кнопки "Run" с функцией "infer"
|
253 |
+
run_button.click(
|
254 |
+
infer,
|
255 |
+
inputs=[
|
256 |
+
model,
|
257 |
+
prompt,
|
258 |
+
negative_prompt,
|
259 |
+
seed,
|
260 |
+
width,
|
261 |
+
height,
|
262 |
+
guidance_scale,
|
263 |
+
num_inference_steps,
|
264 |
+
use_controlnet,
|
265 |
+
control_strength,
|
266 |
+
controlnet_mode,
|
267 |
+
controlnet_image,
|
268 |
+
use_ip_adapter,
|
269 |
+
ip_adapter_scale,
|
270 |
+
ip_adapter_image
|
271 |
+
],
|
272 |
+
outputs=[result, seed],
|
273 |
+
)
|
274 |
+
|
275 |
+
# Запуск
|
276 |
if __name__ == "__main__":
|
277 |
demo.launch()
|