Spaces:
Build error
Build error
from PIL import Image | |
from transformers import pipeline | |
import gradio as gr | |
# 🌐 Load pre-trained image classification model | |
classifier = pipeline("image-classification", model="microsoft/resnet-50") | |
# 🔍 Define bilingual label mapping | |
label_map = { | |
"agaric": ("Edible", "กินได้"), | |
"bolete": ("Edible", "กินได้"), | |
"gyromitra": ("Poisonous", "พิษ"), | |
"amanita": ("Poisonous", "พิษ"), | |
"earthstar": ("Edible", "กินได้"), | |
"hen-of-the-woods": ("Edible", "กินได้"), | |
"mushroom": ("Unknown", "ไม่ทราบ"), | |
"coral fungus": ("Poisonous", "พิษ"), | |
"Amanita muscaria":("Poisonous","พิษ") | |
# Add more if needed | |
} | |
# 🧠 Classification function | |
def classify_mushroom(image: Image.Image): | |
print("✅ classify_mushroom: NEW VERSION") | |
try: | |
image = image.convert("RGB") | |
result = classifier(image) | |
print("🔍 Raw result from model:", result) | |
result = result[0] | |
label = result['label'].lower() | |
score = round(result['score'] * 100, 2) | |
prediction_en, prediction_th = label_map.get(label, ("Unknown", "ไม่ทราบ")) | |
print("✅ RETURNING:", prediction_en, prediction_th, f"{score:.2f}%", label) | |
return prediction_en, prediction_th, f"{score:.2f}%", label | |
except Exception as e: | |
print(f"❌ Error: {e}") | |
return "Error", "ผิดพลาด", "N/A", "N/A" | |
# 🎨 Gradio UI | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🍄 Mushroom Safety Classifier") | |
gr.Markdown("Upload a mushroom photo to check if it’s edible or poisonous.\nอัปโหลดรูปเห็ดเพื่อทำนายว่าเห็ดกินได้หรือมีพิษ") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="📷 Upload Mushroom Image") | |
with gr.Column(): | |
label_en = gr.Textbox(label="🧠 Prediction (English)") | |
label_th = gr.Textbox(label="🗣️ คำทำนาย (ภาษาไทย)") | |
confidence = gr.Textbox(label="📶 Confidence Score") | |
label_raw = gr.Textbox(label="🏷️ Predicted Mushroom Name") | |
classify_btn = gr.Button("🔍 Classify") | |
classify_btn.click( | |
fn=classify_mushroom, | |
inputs=image_input, | |
outputs=[label_en, label_th, confidence, label_raw] | |
) | |
demo.launch() | |