Spaces:
Build error
Build error
# ✅ Import required libraries | |
from PIL import Image | |
import torch | |
import torchvision.transforms as transforms | |
from torchvision import models | |
import gradio as gr | |
from rembg import remove # Background removal | |
# 🔧 Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# 📦 Load your fine-tuned model | |
model = models.resnet50(weights=None) # No pretrained weights | |
model.fc = torch.nn.Sequential( | |
torch.nn.Dropout(0.5), | |
torch.nn.Linear(model.fc.in_features, 2) | |
) | |
model.load_state_dict(torch.load("resnet_mushroom_classifier.pth", map_location=device)) | |
model = model.to(device) | |
model.eval() | |
# 🏷️ Class names and species mapping | |
class_names = ['Edible', 'Poisonous'] | |
mushroom_species = { | |
"Edible": "Possible species:\n• Amanita citrina\n• Russula delica\n• Phaeogyroporus portentosus", | |
"Poisonous": "Possible species:\n• Amanita phalloides\n• Inocybe rimosa" | |
} | |
# 🎨 Image preprocessing | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]) | |
]) | |
# 🧠 Classification function with confidence filtering | |
CONFIDENCE_THRESHOLD = 85.0 # Minimum confidence considered safe enough to show suggestion | |
def classify_mushroom(image: Image.Image): | |
try: | |
image = image.convert("RGBA") | |
image_no_bg = remove(image).convert("RGB") | |
tensor = transform(image_no_bg).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
outputs = model(tensor) | |
_, predicted = torch.max(outputs, 1) | |
label = class_names[predicted.item()] | |
score = torch.softmax(outputs, dim=1)[0][predicted.item()].item() * 100 | |
suggestion = mushroom_species[label] if score >= CONFIDENCE_THRESHOLD else "Confidence too low to suggest species." | |
if score < CONFIDENCE_THRESHOLD: | |
label = "Uncertain" | |
return label, ("กินได้" if label == "Edible" else ("พิษ" if label == "Poisonous" else "ไม่มั่นใจ")), f"{score:.2f}%", suggestion | |
except Exception as e: | |
print(f"❌ Error: {e}") | |
return "Error", "ผิดพลาด", "N/A", "Invalid image. Please upload a valid mushroom photo." | |
# 🔗 Open user manual (link version) 🆕 | |
MANUAL_URL = "https://drive.google.com/drive/folders/19lUCEaLstrRjCzqpDlWErhRd1EXWUGbf?usp=sharing" | |
manual_link = f"<a href=\"{MANUAL_URL}\" target=\"_blank\">📄 Open User Manual</a>" | |
FEEDBACK_URL = "https://forms.gle/doRsn8kk3y6po5d77" | |
feedback_link = f"<a href=\"{FEEDBACK_URL}\" target=\"_blank\">❤️ If you need feedback</a>" | |
# 🎛️ Gradio UI | |
if __name__ == "__main__": | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🍄 Mushroom Safety Classifier") | |
gr.Markdown("Upload a mushroom photo or use your camera to check if it’s edible or poisonous.\nอัปโหลดรูปเห็ดหรือใช้กล้องเพื่อตรวจสอบว่าเห็ดกินได้หรือมีพิษ") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="📷 Upload or Capture Mushroom Image") | |
with gr.Column(): | |
label_en = gr.Textbox(label="🧬 Prediction (English)") | |
label_th = gr.Textbox(label="🔁 คำทำนาย (ภาษาไทย)") | |
confidence = gr.Textbox(label="📶 Confidence Score") | |
label_hint = gr.Textbox(label="🏷️ Likely Species (Based on Training Data)") | |
classify_btn = gr.Button("🔍 Classify") | |
classify_btn.click( | |
fn=classify_mushroom, | |
inputs=image_input, | |
outputs=[label_en, label_th, confidence, label_hint] | |
) | |
gr.Markdown("---") | |
gr.Markdown(manual_link) # 🆕 Display clickable user manual | |
gr.Markdown(feedback_link) # 🆕 Display clickable feedback form | |
gr.Markdown("App version: 1.1.1 | Updated: August 2025") | |
demo.launch() | |