Spaces:
Build error
Build error
| # ✅ Import required libraries | |
| from PIL import Image | |
| import torch | |
| import torchvision.transforms as transforms | |
| from torchvision import models | |
| import gradio as gr | |
| import webbrowser | |
| # 🔧 Set device | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # 📦 Load the trained model | |
| model = models.resnet50(pretrained=False) | |
| model.fc = torch.nn.Linear(model.fc.in_features, 2) # 2 classes: Edible, Poisonous | |
| model.load_state_dict(torch.load("resnet_mushroom_classifier.pth", map_location=device)) | |
| model = model.to(device) | |
| model.eval() | |
| # 🏷️ Class names and species mapping | |
| class_names = ['Edible', 'Poisonous'] | |
| mushroom_species = { | |
| "Edible": "Possible species:\n• Amanita citrina\n• Russula delica\n• Phaeogyroporus portentosus", | |
| "Poisonous": "Possible species:\n• Amanita phalloides\n• Inocybe rimosa" | |
| } | |
| # 🎨 Image preprocessing | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], | |
| [0.229, 0.224, 0.225]) | |
| ]) | |
| # 🧠 Classification function with validation | |
| CONFIDENCE_THRESHOLD = 85.0 # Minimum confidence considered safe enough to show suggestion | |
| def classify_mushroom(image: Image.Image): | |
| try: | |
| image = image.convert("RGB") | |
| tensor = transform(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| outputs = model(tensor) | |
| _, predicted = torch.max(outputs, 1) | |
| label = class_names[predicted.item()] | |
| score = torch.softmax(outputs, dim=1)[0][predicted.item()].item() * 100 | |
| suggestion = mushroom_species[label] if score >= CONFIDENCE_THRESHOLD else "Confidence too low to suggest species." | |
| # Check confidence and warn | |
| if score < CONFIDENCE_THRESHOLD: | |
| label = "Uncertain" | |
| return label, ("กินได้" if label == "Edible" else ("พิษ" if label == "Poisonous" else "ไม่มั่นใจ")), f"{score:.2f}%", suggestion | |
| except Exception as e: | |
| print(f"❌ Error: {e}") | |
| return "Error", "ผิดพลาด", "N/A", "Invalid image. Please upload a valid mushroom photo." | |
| # 🔗 Open user manual | |
| MANUAL_URL = "https://drive.google.com/drive/folders/19lUCEaLstrRjCzqpDlWErhRd1EXWUGbf?usp=sharing" | |
| def open_manual(): | |
| webbrowser.open(MANUAL_URL) | |
| return "", "", "", "Opening user manual..." | |
| # 🎛️ Gradio UI | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## 🍄 Mushroom Safety Classifier") | |
| gr.Markdown("Upload a mushroom photo or use your camera to check if it’s edible or poisonous.\nอัปโหลดรูปเห็ดหรือใช้กล้องเพื่อตรวจสอบว่าเห็ดกินได้หรือมีพิษ") | |
| with gr.Row(): | |
| image_input = gr.Image(type="pil", label="📷 Upload or Capture Mushroom Image", source="upload", tool="editor") | |
| with gr.Column(): | |
| label_en = gr.Textbox(label="🧬 Prediction (English)") | |
| label_th = gr.Textbox(label="🔁 คำทำนาย (ภาษาไทย)") | |
| confidence = gr.Textbox(label="📶 Confidence Score") | |
| label_hint = gr.Textbox(label="🏷️ Likely Species (Based on Training Data)") | |
| classify_btn = gr.Button("🔍 Classify") | |
| manual_btn = gr.Button("Open User Manual 📄") | |
| classify_btn.click( | |
| fn=classify_mushroom, | |
| inputs=image_input, | |
| outputs=[label_en, label_th, confidence, label_hint] | |
| ) | |
| manual_btn.click( | |
| fn=open_manual, | |
| inputs=[], | |
| outputs=[label_en, label_th, confidence, label_hint] | |
| ) | |
| gr.Markdown("---") | |
| gr.Markdown("App version: 1.0.1 | Updated: August 2025") | |
| demo.launch() | |