Spaces:
Runtime error
Runtime error
""" | |
This part of the website was bodged together by ham-handed hedgehogs. If something looks wrong, it's because it is. | |
If you're not a hedgehog, you shouldn't reuse this code. Use this instead: https://docs.streamlit.io/library/get-started | |
""" | |
import os | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import wandb | |
from dashboard_utils.bubbles import get_new_bubble_data | |
from dashboard_utils.main_metrics import get_main_metrics | |
from streamlit_observable import observable | |
st.set_page_config(page_title="Training Transformers Together", layout="centered") | |
with open("static/header.html", 'r', encoding='utf-8') as f: | |
header_html = f.read() | |
with open("static/header_style.css", 'r', encoding='utf-8') as f: | |
header_style_css = f.read() | |
with open("static/header_animate.js") as f: | |
header_animate_js = f.read() | |
with open("static/content_style.css", 'r', encoding='utf-8') as f: | |
content_style_css = f.read() | |
with open("static/meta.html", 'r', encoding='utf-8') as f: | |
meta_html = f.read() | |
st.markdown("## Full demo content will be posted here on December 7th!") | |
components.html(f"<style>{header_style_css}</style>{header_html}<script>{header_animate_js}</script>", height=260) | |
st.markdown(meta_html, unsafe_allow_html=True) | |
st.markdown(f"<style>{content_style_css}</style>", unsafe_allow_html=True) # apply css to the rest of the document | |
def content_text(text: str, vspace_before: int = 0, vspace_after: int = 0): | |
st.markdown(f'<center><div class="padded faded main_text" ' | |
f'style="padding-top: {vspace_before}px;padding-bottom: {vspace_after}px;">' | |
f'{text}</div><center>', | |
unsafe_allow_html=True) | |
CITATIONS = {} | |
def cite(tag): | |
CITATIONS[tag] = len(CITATIONS) + 1 | |
return f"[{CITATIONS[tag]}]" | |
content_text(f""" | |
There was a time when you could comfortably train SoTA vision and language models at home on your workstation. | |
The first ConvNet to beat ImageNet took in 5-6 days on two gamer-grade GPUs {cite("alexnet")}. Today's top-1 imagenet model | |
took 20,000 TPU-v3 days {cite("coatnet")}. And things are even worse in the NLP world: training GPT-3 on a top-tier server | |
with 8 A100 would still take decades {cite("gpt-3")} .""") | |
content_text(f""" | |
So, can individual researchers and small labs still train state-of-the-art? Yes we can! | |
All it takes is for a bunch of us to come together. In fact, we're doing it right now and <b>you're invited to join!</b> | |
""", vspace_before=12, vspace_after=16) | |
source = get_main_metrics() | |
st.vega_lite_chart( | |
source, { | |
"height": 200, | |
"title": "Training DALLE with volunteers. Updated every few minutes during NeurIPS.", | |
"$schema": "https://vega.github.io/schema/vega-lite/v5.json", | |
"description": "Current training progress", | |
"encoding": {"x": {"field": "date", "type": "temporal"}}, | |
"config": {"axisX": {"labelAngle": -40}}, | |
"resolve": {"scale": {"y": "independent"}}, | |
"layer": [ | |
{ | |
"mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}, | |
"color": "#85A9C5"}, | |
"encoding": {"y": {"field": "training loss", "type": "quantitative", "axis": {"titleColor": "#85A9C5"}}}, | |
}, | |
{ | |
"mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0.0}, | |
"color": "#85C5A6", "opacity": 0.5}, | |
"encoding": { | |
"y": {"field": "active participants", "type": "quantitative", "axis": {"titleColor": "#85C5A6"}}}, | |
}, | |
], | |
}, | |
use_container_width=True, | |
) | |
# | |
# st.caption("Number of alive runs over time") | |
# st.vega_lite_chart( | |
# source, | |
# use_container_width=True, | |
# ) | |
# st.caption("Number of steps") | |
# st.vega_lite_chart( | |
# source, | |
# { | |
# "$schema": "https://vega.github.io/schema/vega-lite/v5.json", | |
# "description": "Training Loss", | |
# "mark": {"type": "line", "point": {"tooltip": True, "filled": False, "strokeOpacity": 0}}, | |
# "encoding": {"x": {"field": "date", "type": "temporal"}, "y": {"field": "steps", "type": "quantitative"}}, | |
# "config": {"axisX": {"labelAngle": -40}}, | |
# }, | |
# use_container_width=True, | |
# ) | |
# | |
# st.header("Collaborative training participants") | |
# serialized_data, profiles = get_new_bubble_data() | |
# observable( | |
# "Participants", | |
# notebook="d/9ae236a507f54046", # "@huggingface/participants-bubbles-chart", | |
# targets=["c_noaws"], | |
# redefine={"serializedData": serialized_data, "profileSimple": profiles}, | |
# ) | |