import gradio as gr from transformers import pipeline # Load the Question Answering pipeline qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad") def answer_question(context, question): result = qa_model(question=question, context=context) answer = result['answer'] score = result['score'] return answer, f"{score:.2f}" # Define the Gradio interface with gr.Interface( fn=answer_question, inputs=[gr.inputs.Textbox(lines=10, placeholder="Enter the context here..."), gr.inputs.Textbox(lines=2, placeholder="Enter your question here...")], outputs=[gr.outputs.Textbox(label="Answer"), gr.outputs.Textbox(label="Confidence Score")], title="Question Answering System", description="Upload a document and ask questions to get answers based on the context." ) as qa_app: qa_app.launch()