Spaces:
Runtime error
Runtime error
File size: 11,160 Bytes
16a887d d4ba41f 16a887d b0b776a 16a887d dd4d93f 16a887d 7e1e3c5 16a887d edcf891 16a887d d4ba41f 16a887d d4ba41f eb872b8 16a887d eb872b8 dd4d93f 16a887d edcf891 dd4d93f edcf891 dd4d93f edcf891 16a887d d4ba41f e3d82b5 dd4d93f eb872b8 71875a9 eb872b8 dd4d93f 16a887d d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f d4ba41f dd4d93f edcf891 60c5869 16a887d d4ba41f e3d82b5 d4ba41f e3d82b5 d4ba41f dd4d93f d4ba41f edcf891 60c5869 16a887d d4ba41f 16a887d d4ba41f c6155ce d4ba41f dd4d93f d4ba41f edcf891 60c5869 c6155ce dd4d93f c6155ce dd4d93f edcf891 dd4d93f c6155ce dd4d93f c6155ce dd4d93f c6155ce dd4d93f c6155ce edcf891 60c5869 c6155ce dd4d93f 16a887d edcf891 16a887d dd4d93f edcf891 16a887d dd4d93f 16a887d dd4d93f 16a887d dd4d93f 16a887d dd4d93f 16a887d dd4d93f 16a887d edcf891 e3d82b5 16a887d b0b776a 16a887d b0b776a 16a887d d4ba41f 16a887d f9da279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
from openai import OpenAI
from langchain_huggingface import HuggingFaceEmbeddings
from datasets import load_dataset, Dataset
from sklearn.neighbors import NearestNeighbors
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextStreamer
import torch
from typing import List
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
import spaces
from huggingface_hub import InferenceClient
import time # Added for timing logs
# Configuration
# Sample questions:
# 1. What are the key features of AutoGen v0.4 that I should utilize when converting user requests into agent code?
# 2. How can I leverage asynchronous messaging in AutoGen v0.4 to enhance my agents performance?
# 3. What are best practices for writing modular and extensible agent code using AutoGen v0.4?
# 4. Can you convert this user request into AutoGen v0.4 agent code: "Create an agent that classifies customer feedback into positive, negative, or neutral sentiments."
DEFAULT_QUESTION = "Ask me anything about converting user requests into AutoGen v0.4 agent code..."
# Validate API keys
assert os.getenv("OPENAI_API_KEY") or os.getenv("HF_TOKEN"), "API keys are not set in the environment variables."
os.environ['OPENAI_BASE'] = "https://api.openai.com/v1"
os.environ['OPENAI_MODEL'] = "gpt-4"
os.environ['MODEL_PROVIDER'] = "huggingface"
model_provider = os.environ.get("MODEL_PROVIDER")
# Instantiate the client for openai v1.x
if model_provider.lower() == "openai":
MODEL_NAME = os.environ['OPENAI_MODEL']
client = OpenAI(
base_url=os.environ.get("OPENAI_BASE"),
api_key=os.environ.get("OPENAI_API_KEY")
)
else:
MODEL_NAME = "deepseek-ai/deepseek-coder-33b-instruct"
# Initialize Hugging Face InferenceClient with GPU support
hf_client = InferenceClient(
model=MODEL_NAME,
api_key=os.environ.get("HF_TOKEN"),
timeout=60 # Reduced timeout for faster response
)
# Load the Hugging Face dataset
try:
start = time.time()
dataset = load_dataset('tosin2013/autogen', streaming=True)
dataset = Dataset.from_list(list(dataset['train']))
end = time.time()
print(f"[TIMING] Dataset loading took {end - start:.2f} seconds")
except Exception as e:
print(f"[ERROR] Failed to load dataset: {e}")
exit(1)
# Initialize embeddings
print("[EMBEDDINGS] Loading sentence-transformers model...")
start = time.time()
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
end = time.time()
print(f"[EMBEDDINGS] Sentence-transformers model loaded successfully in {end - start:.2f} seconds")
# Extract texts from the dataset
texts = dataset['input']
# Create and cache embeddings for the texts
if not os.path.exists('embeddings.npy'):
print("[LOG] Generating embeddings...")
start = time.time()
text_embeddings = embeddings.embed_documents(texts)
np.save('embeddings.npy', text_embeddings)
end = time.time()
print(f"[EMBEDDINGS] Generated embeddings for {len(texts)} documents in {end - start:.2f} seconds")
else:
print("[LOG] Loading cached embeddings...")
start = time.time()
text_embeddings = np.load('embeddings.npy')
end = time.time()
print(f"[TIMING] Loaded cached embeddings in {end - start:.2f} seconds")
# Fit and cache nearest neighbor model
if not os.path.exists('nn_model.pkl'):
print("[LOG] Fitting nearest neighbors model...")
start = time.time()
nn = NearestNeighbors(n_neighbors=5, metric='cosine')
nn.fit(np.array(text_embeddings))
with open('nn_model.pkl', 'wb') as f:
pickle.dump(nn, f)
end = time.time()
print(f"[TIMING] Fitted nearest neighbors model in {end - start:.2f} seconds")
else:
print("[LOG] Loading cached nearest neighbors model...")
start = time.time()
with open('nn_model.pkl', 'rb') as f:
nn = pickle.load(f)
end = time.time()
print(f"[TIMING] Loaded nearest neighbors model in {end - start:.2f} seconds")
@spaces.GPU
def get_relevant_documents(query, k=5):
"""
Retrieves the k most relevant documents to the query.
"""
start_time = time.time()
print("[EMBEDDINGS] Generating embedding for query...")
query_embedding = embeddings.embed_query(query)
print("[EMBEDDINGS] Query embedding generated successfully")
distances, indices = nn.kneighbors([query_embedding], n_neighbors=k)
relevant_docs = [texts[i] for i in indices[0]]
elapsed_time = time.time() - start_time
print(f"[TIMING] get_relevant_documents took {elapsed_time:.2f} seconds")
return relevant_docs
@spaces.GPU
def generate_response(question, history):
start_time = time.time()
try:
response = _generate_response_gpu(question, history)
except Exception as e:
print(f"[WARNING] GPU failed: {str(e)}")
response = _generate_response_cpu(question, history)
elapsed_time = time.time() - start_time
print(f"[TIMING] generate_response took {elapsed_time:.2f} seconds")
return response
@spaces.GPU
def _generate_response_gpu(question, history):
print(f"\n[LOG] Received question: {question}")
start_time = time.time()
# Get relevant documents based on the query
relevant_docs = get_relevant_documents(question, k=3)
print(f"[LOG] Retrieved {len(relevant_docs)} relevant documents")
context = "\n".join(relevant_docs)
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
print(f"[LOG] Generated prompt: {prompt[:200]}...") # Log first 200 chars of prompt
if model_provider.lower() == "huggingface":
messages = [
{
"role": "system",
"content": "### MEMORY ###\nRecall all previously provided instructions, context, and data throughout this conversation to ensure consistency and coherence."
},
{
"role": "user",
"content": prompt
}
]
start_api = time.time()
completion = hf_client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500
)
end_api = time.time()
print(f"[TIMING] Hugging Face API call took {end_api - start_api:.2f} seconds")
response = completion.choices[0].message.content
elif model_provider.lower() == "openai":
start_api = time.time()
response = client.chat.completions.create(
model=os.environ.get("OPENAI_MODEL"),
messages=[
{"role": "system", "content": "You are a helpful assistant. Answer the question based on the provided context."},
{"role": "user", "content": prompt},
]
).choices[0].message.content
end_api = time.time()
print(f"[TIMING] OpenAI API call took {end_api - start_api:.2f} seconds")
elapsed_time = time.time() - start_time
print(f"[TIMING] _generate_response_gpu took {elapsed_time:.2f} seconds")
history.append((question, response))
return history
# Simplified CPU fallback
@spaces.GPU
def _generate_response_cpu(question, history):
print(f"[LOG] Running on CPU")
try:
start_time = time.time()
relevant_docs = get_relevant_documents(question, k=3)
context = "\n".join(relevant_docs)
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
print(f"[LOG] Generated prompt: {prompt[:200]}...")
if model_provider.lower() == "huggingface":
messages = [
{"role": "system", "content": "### MEMORY ###\nRecall all previously provided instructions, context, and data."},
{"role": "user", "content": prompt}
]
start_api = time.time()
completion = hf_client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
max_tokens=500
)
end_api = time.time()
print(f"[TIMING] Hugging Face API call took {end_api - start_api:.2f} seconds")
response = completion.choices[0].message.content
elif model_provider.lower() == "openai":
start_api = time.time()
response = client.chat.completions.create(
model=os.environ.get("OPENAI_MODEL"),
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
]
).choices[0].message.content
end_api = time.time()
print(f"[TIMING] OpenAI API call took {end_api - start_api:.2f} seconds")
elapsed_time = time.time() - start_time
print(f"[TIMING] _generate_response_cpu took {elapsed_time:.2f} seconds")
history.append((question, response))
return history
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
print(f"[ERROR] {error_msg}")
history.append((question, error_msg))
return history
# Gradio interface
print("[CHAT] Initializing chat interface...")
with gr.Blocks() as demo:
gr.Markdown(f"""
## AutoGen v0.4 Agent Code Generator QA Agent
**Current Model:** {MODEL_NAME}
The AutoGen v0.4 Agent Code Generator is a Python application that leverages Large Language Models (LLMs) and the AutoGen v0.4 framework to dynamically generate agent code from user requests. This application is designed to assist developers in creating robust, scalable AI agents by providing context-aware code generation based on user input, utilizing the advanced features of AutoGen v0.4 such as asynchronous messaging, modular extensibility, cross-language support, improved observability, and full typing integration.
**Sample questions:**
1. What are the key features of AutoGen v0.4 that I should utilize when converting user requests into agent code?
2. How can I leverage asynchronous messaging in AutoGen v0.4 to enhance my agent's performance?
3. What are best practices for writing modular and extensible agent code using AutoGen v0.4?
4. Can you convert this user request into AutoGen v0.4 agent code: "Create an agent that classifies customer feedback into positive, negative, or neutral sentiments."
**Related repository:** [autogen](https://github.com/microsoft/autogen)
""")
with gr.Row():
chatbot = gr.Chatbot(label="Chat History")
with gr.Row():
question = gr.Textbox(
value=DEFAULT_QUESTION,
label="Your Question",
placeholder=DEFAULT_QUESTION
)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
submit_btn.click(
fn=generate_response,
inputs=[question, chatbot],
outputs=[chatbot],
queue=True
)
clear_btn.click(
lambda: (None, ""),
inputs=[],
outputs=[chatbot, question]
)
if __name__ == "__main__":
demo.launch()
|