File size: 11,160 Bytes
16a887d
 
d4ba41f
16a887d
 
 
 
 
 
 
 
 
b0b776a
16a887d
dd4d93f
16a887d
 
 
 
7e1e3c5
 
 
 
16a887d
 
 
edcf891
 
 
16a887d
 
 
 
 
 
 
 
 
 
d4ba41f
16a887d
 
d4ba41f
eb872b8
16a887d
 
eb872b8
dd4d93f
16a887d
 
 
edcf891
dd4d93f
edcf891
 
dd4d93f
 
edcf891
 
 
16a887d
d4ba41f
e3d82b5
dd4d93f
eb872b8
 
71875a9
eb872b8
dd4d93f
 
16a887d
 
 
 
d4ba41f
 
 
dd4d93f
d4ba41f
 
dd4d93f
 
d4ba41f
 
dd4d93f
d4ba41f
dd4d93f
 
d4ba41f
 
 
 
dd4d93f
d4ba41f
 
 
 
dd4d93f
 
d4ba41f
 
dd4d93f
d4ba41f
 
dd4d93f
 
edcf891
60c5869
16a887d
 
 
 
d4ba41f
e3d82b5
d4ba41f
e3d82b5
d4ba41f
 
 
dd4d93f
d4ba41f
edcf891
60c5869
16a887d
d4ba41f
16a887d
d4ba41f
c6155ce
d4ba41f
 
 
dd4d93f
d4ba41f
edcf891
60c5869
c6155ce
 
dd4d93f
c6155ce
 
 
 
 
 
 
 
 
 
dd4d93f
edcf891
 
 
 
 
 
dd4d93f
c6155ce
 
 
 
 
dd4d93f
 
c6155ce
 
dd4d93f
c6155ce
 
 
 
 
 
dd4d93f
 
 
 
 
c6155ce
 
edcf891
 
60c5869
c6155ce
 
 
dd4d93f
16a887d
 
 
edcf891
16a887d
 
dd4d93f
edcf891
16a887d
dd4d93f
16a887d
 
 
 
 
dd4d93f
 
16a887d
 
dd4d93f
16a887d
 
 
dd4d93f
16a887d
 
dd4d93f
 
 
 
 
16a887d
 
 
 
 
 
 
 
edcf891
e3d82b5
16a887d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b776a
16a887d
b0b776a
 
16a887d
 
 
 
 
 
 
d4ba41f
16a887d
f9da279
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
from openai import OpenAI
from langchain_huggingface import HuggingFaceEmbeddings
from datasets import load_dataset, Dataset
from sklearn.neighbors import NearestNeighbors
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextStreamer
import torch
from typing import List
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
import spaces
from huggingface_hub import InferenceClient
import time  # Added for timing logs

# Configuration

# Sample questions:
# 1. What are the key features of AutoGen v0.4 that I should utilize when converting user requests into agent code?
# 2. How can I leverage asynchronous messaging in AutoGen v0.4 to enhance my agents performance?
# 3. What are best practices for writing modular and extensible agent code using AutoGen v0.4?
# 4. Can you convert this user request into AutoGen v0.4 agent code: "Create an agent that classifies customer feedback into positive, negative, or neutral sentiments."

DEFAULT_QUESTION = "Ask me anything about converting user requests into AutoGen v0.4 agent code..."

# Validate API keys
assert os.getenv("OPENAI_API_KEY") or os.getenv("HF_TOKEN"), "API keys are not set in the environment variables."

os.environ['OPENAI_BASE'] = "https://api.openai.com/v1"
os.environ['OPENAI_MODEL'] = "gpt-4"
os.environ['MODEL_PROVIDER'] = "huggingface"
model_provider = os.environ.get("MODEL_PROVIDER")

# Instantiate the client for openai v1.x
if model_provider.lower() == "openai":
    MODEL_NAME = os.environ['OPENAI_MODEL']
    client = OpenAI(
        base_url=os.environ.get("OPENAI_BASE"),
        api_key=os.environ.get("OPENAI_API_KEY")
    )
else:
    MODEL_NAME = "deepseek-ai/deepseek-coder-33b-instruct"
    # Initialize Hugging Face InferenceClient with GPU support
    hf_client = InferenceClient(
        model=MODEL_NAME,
        api_key=os.environ.get("HF_TOKEN"),
        timeout=60  # Reduced timeout for faster response
    )

# Load the Hugging Face dataset
try:
    start = time.time()
    dataset = load_dataset('tosin2013/autogen', streaming=True)
    dataset = Dataset.from_list(list(dataset['train']))
    end = time.time()
    print(f"[TIMING] Dataset loading took {end - start:.2f} seconds")
except Exception as e:
    print(f"[ERROR] Failed to load dataset: {e}")
    exit(1)

# Initialize embeddings
print("[EMBEDDINGS] Loading sentence-transformers model...")
start = time.time()
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={"device": "cpu"}
)
end = time.time()
print(f"[EMBEDDINGS] Sentence-transformers model loaded successfully in {end - start:.2f} seconds")

# Extract texts from the dataset
texts = dataset['input']

# Create and cache embeddings for the texts
if not os.path.exists('embeddings.npy'):
    print("[LOG] Generating embeddings...")
    start = time.time()
    text_embeddings = embeddings.embed_documents(texts)
    np.save('embeddings.npy', text_embeddings)
    end = time.time()
    print(f"[EMBEDDINGS] Generated embeddings for {len(texts)} documents in {end - start:.2f} seconds")
else:
    print("[LOG] Loading cached embeddings...")
    start = time.time()
    text_embeddings = np.load('embeddings.npy')
    end = time.time()
    print(f"[TIMING] Loaded cached embeddings in {end - start:.2f} seconds")

# Fit and cache nearest neighbor model
if not os.path.exists('nn_model.pkl'):
    print("[LOG] Fitting nearest neighbors model...")
    start = time.time()
    nn = NearestNeighbors(n_neighbors=5, metric='cosine')
    nn.fit(np.array(text_embeddings))
    with open('nn_model.pkl', 'wb') as f:
        pickle.dump(nn, f)
    end = time.time()
    print(f"[TIMING] Fitted nearest neighbors model in {end - start:.2f} seconds")
else:
    print("[LOG] Loading cached nearest neighbors model...")
    start = time.time()
    with open('nn_model.pkl', 'rb') as f:
        nn = pickle.load(f)
    end = time.time()
    print(f"[TIMING] Loaded nearest neighbors model in {end - start:.2f} seconds")

@spaces.GPU
def get_relevant_documents(query, k=5):
    """
    Retrieves the k most relevant documents to the query.
    """
    start_time = time.time()
    print("[EMBEDDINGS] Generating embedding for query...")
    query_embedding = embeddings.embed_query(query)
    print("[EMBEDDINGS] Query embedding generated successfully")
    distances, indices = nn.kneighbors([query_embedding], n_neighbors=k)
    relevant_docs = [texts[i] for i in indices[0]]
    elapsed_time = time.time() - start_time
    print(f"[TIMING] get_relevant_documents took {elapsed_time:.2f} seconds")
    return relevant_docs

@spaces.GPU
def generate_response(question, history):
    start_time = time.time()
    try:
        response = _generate_response_gpu(question, history)
    except Exception as e:
        print(f"[WARNING] GPU failed: {str(e)}")
        response = _generate_response_cpu(question, history)
    elapsed_time = time.time() - start_time
    print(f"[TIMING] generate_response took {elapsed_time:.2f} seconds")
    return response

@spaces.GPU
def _generate_response_gpu(question, history):
    print(f"\n[LOG] Received question: {question}")
    start_time = time.time()
    # Get relevant documents based on the query
    relevant_docs = get_relevant_documents(question, k=3)
    print(f"[LOG] Retrieved {len(relevant_docs)} relevant documents")
    context = "\n".join(relevant_docs)
    prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
    print(f"[LOG] Generated prompt: {prompt[:200]}...")  # Log first 200 chars of prompt
    if model_provider.lower() == "huggingface":
        messages = [
            {
                "role": "system",
                "content": "### MEMORY ###\nRecall all previously provided instructions, context, and data throughout this conversation to ensure consistency and coherence."
            },
            {
                "role": "user",
                "content": prompt
            }
        ]
        start_api = time.time()
        completion = hf_client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            max_tokens=500
        )
        end_api = time.time()
        print(f"[TIMING] Hugging Face API call took {end_api - start_api:.2f} seconds")
        response = completion.choices[0].message.content
    elif model_provider.lower() == "openai":
        start_api = time.time()
        response = client.chat.completions.create(
            model=os.environ.get("OPENAI_MODEL"),
            messages=[
                {"role": "system", "content": "You are a helpful assistant. Answer the question based on the provided context."},
                {"role": "user", "content": prompt},
            ]
        ).choices[0].message.content
        end_api = time.time()
        print(f"[TIMING] OpenAI API call took {end_api - start_api:.2f} seconds")
    elapsed_time = time.time() - start_time
    print(f"[TIMING] _generate_response_gpu took {elapsed_time:.2f} seconds")
    history.append((question, response))
    return history

# Simplified CPU fallback
@spaces.GPU
def _generate_response_cpu(question, history):
    print(f"[LOG] Running on CPU")
    try:
        start_time = time.time()
        relevant_docs = get_relevant_documents(question, k=3)
        context = "\n".join(relevant_docs)
        prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer:"
        print(f"[LOG] Generated prompt: {prompt[:200]}...")
        if model_provider.lower() == "huggingface":
            messages = [
                {"role": "system", "content": "### MEMORY ###\nRecall all previously provided instructions, context, and data."},
                {"role": "user", "content": prompt}
            ]
            start_api = time.time()
            completion = hf_client.chat.completions.create(
                model=MODEL_NAME,
                messages=messages,
                max_tokens=500
            )
            end_api = time.time()
            print(f"[TIMING] Hugging Face API call took {end_api - start_api:.2f} seconds")
            response = completion.choices[0].message.content
        elif model_provider.lower() == "openai":
            start_api = time.time()
            response = client.chat.completions.create(
                model=os.environ.get("OPENAI_MODEL"),
                messages=[
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": prompt},
                ]
            ).choices[0].message.content
            end_api = time.time()
            print(f"[TIMING] OpenAI API call took {end_api - start_api:.2f} seconds")
        elapsed_time = time.time() - start_time
        print(f"[TIMING] _generate_response_cpu took {elapsed_time:.2f} seconds")
        history.append((question, response))
        return history
    except Exception as e:
        error_msg = f"Error generating response: {str(e)}"
        print(f"[ERROR] {error_msg}")
        history.append((question, error_msg))
        return history

# Gradio interface
print("[CHAT] Initializing chat interface...")
with gr.Blocks() as demo:
    gr.Markdown(f"""
    ## AutoGen v0.4 Agent Code Generator QA Agent
    **Current Model:** {MODEL_NAME}
    
    The AutoGen v0.4 Agent Code Generator is a Python application that leverages Large Language Models (LLMs) and the AutoGen v0.4 framework to dynamically generate agent code from user requests. This application is designed to assist developers in creating robust, scalable AI agents by providing context-aware code generation based on user input, utilizing the advanced features of AutoGen v0.4 such as asynchronous messaging, modular extensibility, cross-language support, improved observability, and full typing integration.
    
    **Sample questions:**
    1. What are the key features of AutoGen v0.4 that I should utilize when converting user requests into agent code?
    2. How can I leverage asynchronous messaging in AutoGen v0.4 to enhance my agent's performance?
    3. What are best practices for writing modular and extensible agent code using AutoGen v0.4?
    4. Can you convert this user request into AutoGen v0.4 agent code: "Create an agent that classifies customer feedback into positive, negative, or neutral sentiments."
    
    **Related repository:** [autogen](https://github.com/microsoft/autogen)
    """)
    
    with gr.Row():
        chatbot = gr.Chatbot(label="Chat History")
    
    with gr.Row():
        question = gr.Textbox(
            value=DEFAULT_QUESTION,
            label="Your Question",
            placeholder=DEFAULT_QUESTION
        )
    
    with gr.Row():
        submit_btn = gr.Button("Submit")
        clear_btn = gr.Button("Clear")
    
    submit_btn.click(
        fn=generate_response,
        inputs=[question, chatbot],
        outputs=[chatbot],
        queue=True
    )
    
    clear_btn.click(
        lambda: (None, ""),
        inputs=[],
        outputs=[chatbot, question]
    )

if __name__ == "__main__":
    demo.launch()