Spaces:
Sleeping
Sleeping
File size: 31,040 Bytes
f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd dec9e8e f63d7fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
# modules/analysis_pipeline.py
import os
import asyncio
import pandas as pd
from datetime import datetime
import google.generativeai as genai
from dotenv import load_dotenv
from .api_clients import AlphaVantageClient, NewsAPIClient, MarketauxClient, get_price_history
import time
# Load environment variables and configure AI
load_dotenv()
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
MODEL_NAME = os.getenv("GEMINI_MODEL", "gemini-2.5-flash")
# Define the analysis pipeline class
class StockAnalysisPipeline:
"""Pipeline for generating comprehensive stock analysis reports"""
def __init__(self, symbol):
"""Initialize the pipeline with a stock symbol"""
self.symbol = symbol.upper() # Convert to uppercase
self.company_data = {}
self.analysis_results = {}
self.ai_model = genai.GenerativeModel(model_name=MODEL_NAME)
async def run_analysis(self):
"""Run the full analysis pipeline in an interleaved pattern"""
print(f"Starting analysis pipeline for {self.symbol}...")
# 1. Get company overview and financial statements first
await self._get_company_overview()
if hasattr(self, 'company_name'):
print(f"Analyzing {self.symbol} ({self.company_name})")
else:
self.company_name = self.symbol
print(f"Analyzing {self.symbol}")
# 2. Get and analyze financial statements
print("Getting financial data...")
await self._get_financial_statements()
# 3. Run financial health analysis with Gemini
print("Analyzing financial health...")
self.analysis_results['financial_health'] = await self._analyze_financial_health()
# 4. Get and analyze market news and sentiment
print("Getting news and sentiment data...")
await self._get_market_sentiment_and_news()
# 5. Run news sentiment analysis with Gemini
print("Analyzing news and sentiment...")
self.analysis_results['news_sentiment'] = await self._analyze_news_sentiment()
# 6. Get quote data and price history
print("Getting quote and price data...")
await self._get_analyst_ratings()
await self._get_price_data()
# 7. Run expert opinion analysis with Gemini
print("Analyzing market data...")
self.analysis_results['expert_opinion'] = await self._analyze_expert_opinion()
# 8. Create final summary and recommendation
print("Creating final summary and recommendation...")
self.analysis_results['summary'] = await self._create_summary()
# 9. Return the complete analysis
return {
'symbol': self.symbol,
'company_name': self.company_name,
'analysis': self.analysis_results,
'price_data': self.company_data.get('price_data', {}),
'overview': self.company_data.get('overview', {})
}
async def _get_company_overview(self):
"""Get company overview information"""
self.company_data['overview'] = await AlphaVantageClient.get_company_overview(self.symbol)
if self.company_data['overview'] and 'Name' in self.company_data['overview']:
self.company_name = self.company_data['overview']['Name']
else:
self.company_name = self.symbol
print(f"Retrieved company overview for {self.symbol}")
async def _get_financial_statements(self):
"""Get company financial statements"""
# Run these in parallel
income_stmt_task = AlphaVantageClient.get_income_statement(self.symbol)
balance_sheet_task = AlphaVantageClient.get_balance_sheet(self.symbol)
cash_flow_task = AlphaVantageClient.get_cash_flow(self.symbol)
# Wait for all tasks to complete
results = await asyncio.gather(
income_stmt_task,
balance_sheet_task,
cash_flow_task
)
# Store results
self.company_data['income_statement'] = results[0]
self.company_data['balance_sheet'] = results[1]
self.company_data['cash_flow'] = results[2]
print(f"Retrieved financial statements for {self.symbol}")
async def _get_market_sentiment_and_news(self):
"""Get market sentiment and news about the company"""
# Get news from multiple sources in parallel
alpha_news_task = AlphaVantageClient.get_news_sentiment(self.symbol)
news_api_task = NewsAPIClient.get_company_news(self.company_name if hasattr(self, 'company_name') else self.symbol)
marketaux_task = MarketauxClient.get_company_news(self.symbol)
# Wait for all tasks to complete
results = await asyncio.gather(
alpha_news_task,
news_api_task,
marketaux_task
)
# Store results
self.company_data['alpha_news'] = results[0]
self.company_data['news_api'] = results[1]
self.company_data['marketaux'] = results[2]
print(f"Retrieved news and sentiment for {self.symbol}")
async def _get_analyst_ratings(self):
"""Get current stock quotes instead of analyst ratings"""
self.company_data['quote_data'] = await AlphaVantageClient.get_global_quote(self.symbol)
print(f"Retrieved quote data for {self.symbol}")
async def _get_price_data(self):
"""Get historical price data"""
# Get price data for different time periods
periods = ['1_month', '3_months', '1_year']
price_data = {}
# Sử dụng phương thức đồng bộ thông thường vì get_price_history không còn async
for period in periods:
price_data[period] = get_price_history(self.symbol, period)
self.company_data['price_data'] = price_data
print(f"Retrieved price history for {self.symbol}")
async def _analyze_financial_health(self):
"""Analyze company's financial health using AI"""
# Add a small delay before API call to Gemini to avoid rate limiting
await asyncio.sleep(1)
# Prepare financial data for the AI
financial_data = {
'overview': self.company_data.get('overview', {}),
'income_statement': self.company_data.get('income_statement', {}),
'balance_sheet': self.company_data.get('balance_sheet', {}),
'cash_flow': self.company_data.get('cash_flow', {})
}
# Create prompt for financial analysis
prompt = f"""
You are a senior financial analyst. Analyze the financial health of {self.symbol} based on the following data:
{financial_data}
Provide a detailed analysis covering:
1. Overall financial condition overview
2. Key financial ratios analysis (P/E, ROE, Debt/Equity, etc.)
3. Revenue and profit growth assessment
4. Cash flow and liquidity assessment
5. Key financial strengths and weaknesses
Format requirements:
- Write in professional, concise financial reporting style
- Use Markdown formatting with appropriate headers and bullet points
- DO NOT include any introductory phrases like "Hello," "I'm happy to provide," etc.
- DO NOT include any concluding phrases
- Present only factual analysis based on the data
- Present the information directly and objectively
- Prefer using the correct currency text instead of the symbol. For example, use USD instead of $
"""
# Get AI response
response = self.ai_model.generate_content(prompt)
return response.text
async def _analyze_news_sentiment(self):
"""Analyze news and market sentiment using AI"""
# Add a small delay before API call to Gemini to avoid rate limiting
await asyncio.sleep(1)
# Prepare news data for the AI
news_data = {
'alpha_news': self.company_data.get('alpha_news', {}),
'news_api': self.company_data.get('news_api', {}),
'marketaux': self.company_data.get('marketaux', {})
}
# Create prompt for news analysis
prompt = f"""
You are a market analyst. Analyze news and market sentiment about {self.symbol} based on the following data:
{news_data}
Provide a detailed analysis covering:
1. Summary of key recent news about the company
2. Important events that could impact stock price
3. Overall market sentiment analysis (positive/negative/neutral)
4. Risk factors identified in news
Format requirements:
- Write in professional, concise financial reporting style
- Use Markdown formatting with appropriate headers and bullet points
- DO NOT include any introductory phrases like "Hello," "I'm happy to provide," etc.
- DO NOT include any concluding phrases
- Present only factual analysis based on the data
- Present the information directly and objectively
- Prefer using the correct currency text instead of the symbol. For example, use USD instead of $
"""
# Get AI response
response = self.ai_model.generate_content(prompt)
return response.text
async def _analyze_expert_opinion(self):
"""Analyze current stock quote and price data"""
# Add a small delay before API call to Gemini to avoid rate limiting
await asyncio.sleep(1)
# Prepare data for the AI
quote_data = self.company_data.get('quote_data', {})
price_data = self.company_data.get('price_data', {})
overview = self.company_data.get('overview', {})
# Create prompt for market analysis with chart descriptions
chart_descriptions = []
# Add descriptions for each timeframe chart
for period, period_name in [('1_month', 'last month'), ('3_months', 'last 3 months'), ('1_year', 'last year')]:
if period in price_data and 'values' in price_data[period] and price_data[period]['values']:
values = price_data[period]['values']
# Get first and last price for the period
first_price = float(values[-1]['close']) # Reversed order in the API
last_price = float(values[0]['close'])
price_change = ((last_price - first_price) / first_price) * 100
# Calculate volatility (standard deviation)
if len(values) > 1:
closes = [float(day['close']) for day in values]
volatility = pd.Series(closes).pct_change().std() * 100 # Convert to percentage
else:
volatility = 0.0
# Detect trend (simple linear regression slope)
if len(values) > 2:
closes = [float(day['close']) for day in values]
dates = list(range(len(closes)))
slope = pd.Series(closes).corr(pd.Series(dates))
trend = "strong upward" if slope > 0.7 else \
"upward" if slope > 0.3 else \
"relatively flat" if slope > -0.3 else \
"downward" if slope > -0.7 else \
"strong downward"
else:
trend = "insufficient data to determine"
# Get price range
prices = [float(day['close']) for day in values]
min_price = min(prices) if prices else 0
max_price = max(prices) if prices else 0
price_range = max_price - min_price
# Find significant price movements
significant_changes = []
if len(values) > 5:
for i in range(1, len(values)):
prev_close = float(values[i]['close'])
curr_close = float(values[i-1]['close'])
daily_change = ((curr_close - prev_close) / prev_close) * 100
if abs(daily_change) > 2.0: # More than 2% daily change
date = values[i-1]['datetime']
significant_changes.append(f"On {date}, there was a {daily_change:.2f}% {'increase' if daily_change > 0 else 'decrease'}")
# Limit to 3 most significant changes
significant_changes = significant_changes[:3]
# Create chart description
description = f"""
Chart for {period_name}:
- Overall trend: {trend}
- Price change: {price_change:.2f}% ({first_price:.2f} to {last_price:.2f})
- Volatility: {volatility:.2f}%
- Price range: {min_price:.2f} to {max_price:.2f} (range: {price_range:.2f})
"""
# Add significant changes if any
if significant_changes:
description += "- Significant price movements:\n * " + "\n * ".join(significant_changes)
chart_descriptions.append(description)
# Create prompt for market analysis
prompt = f"""
You are a stock market analyst. Analyze the current stock data for {self.symbol} based on the following information:
Current Quote Data: {quote_data}
Company Overview: {overview}
Chart Analysis:
{chr(10).join(chart_descriptions)}
Provide a detailed analysis covering:
1. Current stock performance overview
2. Price trends and technical indicators based on the charts
3. Price comparison with sector averages and benchmarks
4. Potential price movement factors
5. Technical analysis of support and resistance levels
6. Trading volume patterns and their significance
Format requirements:
- Write in professional, concise financial reporting style
- Use Markdown formatting with appropriate headers and bullet points
- DO NOT include any introductory phrases like "Hello," "I'm happy to provide," etc.
- DO NOT include any concluding phrases
- Present only factual analysis based on the data
- Present the information directly and objectively
- Prefer using the correct currency text instead of the symbol. For example, use USD instead of $
"""
# Get AI response
response = self.ai_model.generate_content(prompt)
return response.text
async def _create_summary(self):
"""Create a comprehensive summary and investment recommendation"""
# Add a small delay before API call to Gemini to avoid rate limiting
await asyncio.sleep(1)
# Combine all analyses
combined_analysis = {
'financial_health': self.analysis_results.get('financial_health', ''),
'news_sentiment': self.analysis_results.get('news_sentiment', ''),
'expert_opinion': self.analysis_results.get('expert_opinion', '')
}
# Add overview data
overview = self.company_data.get('overview', {})
# Create prompt for final summary
prompt = f"""
You are an investment advisor. Based on the detailed analyses below for {self.symbol} ({overview.get('Name', '')}),
synthesize a final report and investment recommendation:
=== Company Basic Information ===
{overview}
=== Financial Health Analysis ===
{combined_analysis['financial_health']}
=== News and Market Sentiment Analysis ===
{combined_analysis['news_sentiment']}
=== Market Analysis ===
{combined_analysis['expert_opinion']}
Provide:
1. Brief company and industry overview
2. Summary of key strengths and weaknesses from the analyses above
3. Risk and opportunity assessment
4. Investment recommendation (BULLISH/BEARISH/NEUTRAL) with rationale
5. Key factors to monitor going forward
Format requirements:
- Write in professional, concise financial reporting style
- Use Markdown formatting with appropriate headers and bullet points
- DO NOT include any introductory phrases like "Hello," "I'm happy to provide," etc.
- DO NOT include any concluding phrases or sign-offs
- Present the report directly and objectively
- The report should be comprehensive but concise
- Prefer using the correct currency text instead of the symbol. For example, use USD instead of $
"""
# Get AI response
response = self.ai_model.generate_content(prompt)
return response.text
# Main function to run the pipeline
async def run_analysis_pipeline(symbol):
"""Run the complete stock analysis pipeline for a given symbol"""
pipeline = StockAnalysisPipeline(symbol)
return await pipeline.run_analysis()
# Function to generate HTML report from analysis results
import altair as alt
import base64
import io
from PIL import Image
# Function to convert Altair chart to base64 image
def chart_to_base64(chart):
"""Convert Altair chart to base64-encoded PNG image"""
# Save chart as PNG
import io
import base64
from PIL import Image
try:
# Sử dụng Altair's save method
import tempfile
# Tạo file tạm thời để lưu chart
with tempfile.NamedTemporaryFile(suffix='.png') as tmpfile:
# Lưu biểu đồ dưới dạng PNG
chart.save(tmpfile.name)
# Đọc file PNG và mã hóa base64
with open(tmpfile.name, 'rb') as f:
image_bytes = f.read()
base64_image = base64.b64encode(image_bytes).decode('utf-8')
return base64_image
except Exception as e:
# Backup method - tạo hình ảnh đơn giản với thông tin chart
try:
print(f"Chart rendering failed: {str(e)}")
# Tạo một hình ảnh thay thế đơn giản
width, height = 800, 400
# Tạo hình ảnh trắng
image = Image.new("RGB", (width, height), (255, 255, 255))
# Lưu hình ảnh vào buffer
buffer = io.BytesIO()
image.save(buffer, format="PNG")
image_bytes = buffer.getvalue()
# Mã hóa base64
base64_image = base64.b64encode(image_bytes).decode('utf-8')
return base64_image
except:
return None
# Function to create price chart from price data
def create_price_chart(price_data, period, symbol):
"""Create a price chart from the price data"""
if 'values' not in price_data:
return None
df = pd.DataFrame(price_data['values'])
if df.empty:
return None
df['datetime'] = pd.to_datetime(df['datetime'])
df['close'] = pd.to_numeric(df['close'])
# Map period to title
title_map = {
'1_month': f'{symbol} - Price over the last month',
'3_months': f'{symbol} - Price over the last 3 months',
'1_year': f'{symbol} - Price over the last year'
}
# Create the Altair chart
chart = alt.Chart(df).mark_line(color='#3498db').encode(
x=alt.X('datetime:T', title='Time'),
y=alt.Y('close:Q', title='Closing Price', scale=alt.Scale(zero=False)),
).properties(
title=title_map.get(period, f'Stock price ({period})'),
width=800,
height=400
)
# Add a point for the last day
last_point = alt.Chart(df.iloc[[-1]]).mark_circle(size=100, color='red').encode(
x='datetime:T',
y='close:Q',
tooltip=[
alt.Tooltip('datetime:T', title='Date', format='%d/%m/%Y'),
alt.Tooltip('close:Q', title='Closing Price', format=',.2f'),
alt.Tooltip('volume:Q', title='Volume', format=',.0f')
]
)
# Combine the line and point charts
final_chart = chart + last_point
return final_chart
# Sửa function generate_html_report để thêm biểu đồ
def generate_html_report(analysis_results):
"""Generate HTML report from analysis results"""
# Import markdown module
import markdown
import re
from markdown.extensions.tables import TableExtension
from markdown.extensions.fenced_code import FencedCodeExtension
# Get current date for the report
current_date = datetime.now().strftime("%d/%m/%Y")
symbol = analysis_results['symbol']
company_name = analysis_results['company_name']
import json
json.dump(analysis_results['analysis'], open('analysis_results_before.json', 'w'), ensure_ascii=False, indent=4)
# Pre-process markdown text to fix bullet point styling
def process_markdown_text(text):
# First, properly format bullet points with '*'
# Pattern: "\n* Item" -> "\n\n- Item"
text = re.sub(r'\n\*\s+(.*?)$', r'\n\n- \1', text, flags=re.MULTILINE)
# Pattern: Replace $ with USD
text = text.replace('$', 'USD ')
return text
# Process and convert markdown to HTML
summary_text = process_markdown_text(analysis_results['analysis']['summary'])
financial_text = process_markdown_text(analysis_results['analysis']['financial_health'])
news_text = process_markdown_text(analysis_results['analysis']['news_sentiment'])
expert_text = process_markdown_text(analysis_results['analysis']['expert_opinion'])
import json
json.dump({'summary': summary_text, 'financial': financial_text, 'news': news_text, 'expert': expert_text}, open('analysis_results.json', 'w'), ensure_ascii=False, indent=4)
# Convert to HTML
summary_html = markdown.markdown(
summary_text,
extensions=['tables', 'fenced_code']
)
financial_html = markdown.markdown(
financial_text,
extensions=['tables', 'fenced_code']
)
news_html = markdown.markdown(
news_text,
extensions=['tables', 'fenced_code']
)
expert_html = markdown.markdown(
expert_text,
extensions=['tables', 'fenced_code']
)
# Generate chart images
price_charts_html = ""
if 'price_data' in analysis_results:
price_data = analysis_results['price_data']
periods = ['1_month', '3_months', '1_year']
for period in periods:
if period in price_data:
chart = create_price_chart(price_data[period], period, symbol)
if chart:
try:
base64_image = chart_to_base64(chart)
if base64_image:
price_charts_html += f"""
<div class="chart-container">
<h3>Price Chart - {period.replace('_', ' ').title()}</h3>
<img src="data:image/png;base64,{base64_image}" alt="{symbol} {period} chart"
style="width: 100%; max-width: 800px; margin: 0 auto; display: block;">
</div>
"""
except Exception as e:
print(f"Error generating chart image: {e}")
# Create HTML content
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Stock Analysis Report {symbol}</title>
<style>
body {{
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
line-height: 1.6;
color: #333;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background-color: #f9f9f9;
}}
.report-header {{
background-color: #2c3e50;
color: white;
padding: 20px;
border-radius: 5px 5px 0 0;
position: relative;
}}
.report-date {{
position: absolute;
top: 20px;
right: 20px;
font-size: 14px;
}}
.report-title {{
margin: 0;
padding: 0;
font-size: 24px;
color: white;
}}
.report-subtitle {{
margin: 5px 0 0;
padding: 0;
font-size: 16px;
font-weight: normal;
color: white;
}}
.report-body {{
background-color: white;
padding: 20px;
border-radius: 0 0 5px 5px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}}
.section {{
margin-bottom: 20px;
border-bottom: 1px solid #eee;
padding-bottom: 20px;
}}
h1, h2, h3, h4, h5, h6 {{
color: #2c3e50;
margin-top: 1.5em;
margin-bottom: 0.5em;
}}
h1 {{ font-size: 24px; }}
h2 {{
font-size: 20px;
border-bottom: 2px solid #3498db;
padding-bottom: 5px;
color: #2c3e50 !important;
}}
h3 {{ font-size: 18px; color: #3498db; }}
h4 {{ font-size: 16px; }}
p {{ margin: 0.8em 0; }}
ul, ol {{
margin: 1em 0 1em 2em;
padding-left: 0;
}}
li {{
margin-bottom: 0.8em;
line-height: 1.5;
}}
li strong {{
color: #2c3e50;
}}
table {{
width: 100%;
border-collapse: collapse;
margin: 15px 0;
}}
th, td {{
padding: 12px;
border: 1px solid #ddd;
text-align: left;
}}
th {{
background-color: #f2f2f2;
font-weight: bold;
}}
tr:nth-child(even) {{
background-color: #f9f9f9;
}}
.bullish {{
color: #27ae60;
font-weight: bold;
}}
.bearish {{
color: #e74c3c;
font-weight: bold;
}}
.neutral {{
color: #f39c12;
font-weight: bold;
}}
code {{
background: #f8f8f8;
border: 1px solid #ddd;
border-radius: 3px;
padding: 0 3px;
font-family: Consolas, monospace;
}}
pre {{
background: #f8f8f8;
border: 1px solid #ddd;
border-radius: 3px;
padding: 10px;
overflow-x: auto;
}}
blockquote {{
margin: 1em 0;
padding: 0 1em;
color: #666;
border-left: 4px solid #ddd;
}}
hr {{
border: 0;
border-top: 1px solid #eee;
margin: 20px 0;
}}
.footer {{
text-align: center;
margin-top: 40px;
padding-top: 20px;
font-size: 12px;
color: #777;
border-top: 1px solid #eee;
}}
/* Custom styling for bullet points */
ul {{
list-style-type: disc;
}}
ul ul {{
list-style-type: circle;
}}
ul ul ul {{
list-style-type: square;
}}
/* Fix for section headers to ensure they're black */
.section h2 {{
color: #2c3e50 !important;
}}
/* Fix for investment report headers */
strong {{
color: inherit;
}}
/* Chart container styling */
.chart-container {{
margin: 30px 0;
text-align: center;
}}
.chart-container h3 {{
text-align: center;
}}
</style>
</head>
<body>
<div class="report-header">
<div class="report-date">Date: {current_date}</div>
<h1 class="report-title">Stock Analysis Report: {symbol}</h1>
<h2 class="report-subtitle">{company_name}</h2>
</div>
<div class="report-body">
<div class="section">
<h2>Summary & Recommendation</h2>
{summary_html}
</div>
<div class="section">
<h2>Financial Health Analysis</h2>
{financial_html}
</div>
<div class="section">
<h2>News & Market Sentiment Analysis</h2>
{news_html}
</div>
<div class="section">
<h2>Market Analysis</h2>
{expert_html}
</div>
<div class="section">
<h2>Price Charts</h2>
{price_charts_html}
</div>
<div class="footer">
This report was automatically generated by AI Financial Dashboard. Information is for reference only.
</div>
</div>
</body>
</html>
"""
return html_content
# Function to generate and save PDF report
def generate_pdf_report(analysis_results, output_path):
"""Generate and save PDF report directly"""
from weasyprint import HTML
# Generate HTML content
html_content = generate_html_report(analysis_results)
# Save HTML preview for debugging
with open("report_preview.html", "w", encoding="utf-8") as f:
f.write(html_content)
# Generate PDF
try:
HTML(string=html_content).write_pdf(output_path)
print(f"PDF report saved successfully at: {output_path}")
return True
except Exception as e:
print(f"Error generating PDF report: {e}")
return False |