Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload 12 files
Browse files- README.md +51 -6
- app.py +2086 -0
- config.py +204 -0
- gitattributes.txt +35 -0
- gitignore.txt +12 -0
- i18n.py +28 -0
- packages.txt +3 -0
- requirements.txt +22 -0
- rmvpe.py +432 -0
- run.sh +16 -0
- utils.py +151 -0
- vc_infer_pipeline.py +646 -0
    	
        README.md
    CHANGED
    
    | @@ -1,12 +1,57 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title:  | 
| 3 | 
            -
            emoji:  | 
| 4 | 
            -
            colorFrom:  | 
| 5 | 
            -
            colorTo:  | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 3. | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
|  | |
| 10 | 
             
            ---
         | 
| 11 |  | 
| 12 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: Magic Vocals
         | 
| 3 | 
            +
            emoji: 🦀
         | 
| 4 | 
            +
            colorFrom: red
         | 
| 5 | 
            +
            colorTo: pink
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 3.42.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            +
            license: lgpl-3.0
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            ## 🔧 Pre-requisites
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            Before running the project, you must have the following tool installed on your machine: 
         | 
| 16 | 
            +
            * [Python v3.8.0](https://www.python.org/downloads/release/python-380/)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            Also, you will need to clone the repository:
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            ```bash
         | 
| 21 | 
            +
            # Clone the repository
         | 
| 22 | 
            +
            git clone https://huggingface.co/spaces/mateuseap/magic-vocals/
         | 
| 23 | 
            +
            # Enter in the root directory
         | 
| 24 | 
            +
            cd magic-vocals
         | 
| 25 | 
            +
            ```
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ## 🚀 How to run
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            After you've cloned the repository and entered in the root directory, run the following commands:
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            ```bash
         | 
| 32 | 
            +
            # Create and activate a Virtual Environment (make sure you're using Python v3.8.0 to do it)
         | 
| 33 | 
            +
            python -m venv venv
         | 
| 34 | 
            +
            . venv/bin/activate
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            # Change mode and execute a shell script to configure and run the application
         | 
| 37 | 
            +
            chmod +x run.sh
         | 
| 38 | 
            +
            ./run.sh
         | 
| 39 | 
            +
            ```
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            After the shell script executes everything, the application will be running at http://127.0.0.1:7860! Open up the link in a browser to use the app:
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            **You only need to execute the `run.sh` one time**, once you've executed it one time, you just need to activate the virtual environment and run the command below to start the app again:
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            ```bash
         | 
| 48 | 
            +
            python app.py
         | 
| 49 | 
            +
            ```
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            **THE `run.sh` IS SUPPORTED BY THE FOLLOWING OPERATING SYSTEMS:**
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            | OS        | Supported |
         | 
| 55 | 
            +
            |-----------|:---------:|
         | 
| 56 | 
            +
            | `Windows` |     ❌    |
         | 
| 57 | 
            +
            | `Ubuntu`  |     ✅    |
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,2086 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
         | 
| 2 | 
            +
            from mega import Mega
         | 
| 3 | 
            +
            os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
         | 
| 4 | 
            +
            import threading
         | 
| 5 | 
            +
            from time import sleep
         | 
| 6 | 
            +
            from subprocess import Popen
         | 
| 7 | 
            +
            import faiss
         | 
| 8 | 
            +
            from random import shuffle
         | 
| 9 | 
            +
            import json, datetime, requests
         | 
| 10 | 
            +
            from gtts import gTTS
         | 
| 11 | 
            +
            now_dir = os.getcwd()
         | 
| 12 | 
            +
            sys.path.append(now_dir)
         | 
| 13 | 
            +
            tmp = os.path.join(now_dir, "TEMP")
         | 
| 14 | 
            +
            shutil.rmtree(tmp, ignore_errors=True)
         | 
| 15 | 
            +
            shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
         | 
| 16 | 
            +
            os.makedirs(tmp, exist_ok=True)
         | 
| 17 | 
            +
            os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
         | 
| 18 | 
            +
            os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
         | 
| 19 | 
            +
            os.environ["TEMP"] = tmp
         | 
| 20 | 
            +
            warnings.filterwarnings("ignore")
         | 
| 21 | 
            +
            torch.manual_seed(114514)
         | 
| 22 | 
            +
            from i18n import I18nAuto
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            import signal
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import math
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from utils import load_audio, CSVutil
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            global DoFormant, Quefrency, Timbre
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            if not os.path.isdir('csvdb/'):
         | 
| 33 | 
            +
                os.makedirs('csvdb')
         | 
| 34 | 
            +
                frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
         | 
| 35 | 
            +
                frmnt.close()
         | 
| 36 | 
            +
                stp.close()
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            try:
         | 
| 39 | 
            +
                DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
         | 
| 40 | 
            +
                DoFormant = (
         | 
| 41 | 
            +
                    lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
         | 
| 42 | 
            +
                )(DoFormant)
         | 
| 43 | 
            +
            except (ValueError, TypeError, IndexError):
         | 
| 44 | 
            +
                DoFormant, Quefrency, Timbre = False, 1.0, 1.0
         | 
| 45 | 
            +
                CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            def download_models():
         | 
| 48 | 
            +
                # Download hubert base model if not present
         | 
| 49 | 
            +
                if not os.path.isfile('./hubert_base.pt'):
         | 
| 50 | 
            +
                    response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    if response.status_code == 200:
         | 
| 53 | 
            +
                        with open('./hubert_base.pt', 'wb') as f:
         | 
| 54 | 
            +
                            f.write(response.content)
         | 
| 55 | 
            +
                        print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
         | 
| 56 | 
            +
                    else:
         | 
| 57 | 
            +
                        raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                # Download rmvpe model if not present
         | 
| 60 | 
            +
                if not os.path.isfile('./rmvpe.pt'):
         | 
| 61 | 
            +
                    response = requests.get('https://drive.usercontent.google.com/download?id=1Hkn4kNuVFRCNQwyxQFRtmzmMBGpQxptI&export=download&authuser=0&confirm=t&uuid=0b3a40de-465b-4c65-8c41-135b0b45c3f7&at=APZUnTV3lA3LnyTbeuduura6Dmi2:1693724254058')
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    if response.status_code == 200:
         | 
| 64 | 
            +
                        with open('./rmvpe.pt', 'wb') as f:
         | 
| 65 | 
            +
                            f.write(response.content)
         | 
| 66 | 
            +
                        print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
         | 
| 67 | 
            +
                    else:
         | 
| 68 | 
            +
                        raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            download_models()
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            def formant_apply(qfrency, tmbre):
         | 
| 75 | 
            +
                Quefrency = qfrency
         | 
| 76 | 
            +
                Timbre = tmbre
         | 
| 77 | 
            +
                DoFormant = True
         | 
| 78 | 
            +
                CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
         | 
| 79 | 
            +
                
         | 
| 80 | 
            +
                return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            def get_fshift_presets():
         | 
| 83 | 
            +
                fshift_presets_list = []
         | 
| 84 | 
            +
                for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
         | 
| 85 | 
            +
                    for filename in filenames:
         | 
| 86 | 
            +
                        if filename.endswith(".txt"):
         | 
| 87 | 
            +
                            fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
         | 
| 88 | 
            +
                            
         | 
| 89 | 
            +
                if len(fshift_presets_list) > 0:
         | 
| 90 | 
            +
                    return fshift_presets_list
         | 
| 91 | 
            +
                else:
         | 
| 92 | 
            +
                    return ''
         | 
| 93 | 
            +
             | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
         | 
| 97 | 
            +
                
         | 
| 98 | 
            +
                if (cbox):
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    DoFormant = True
         | 
| 101 | 
            +
                    CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
         | 
| 102 | 
            +
                    #print(f"is checked? - {cbox}\ngot {DoFormant}")
         | 
| 103 | 
            +
                    
         | 
| 104 | 
            +
                    return (
         | 
| 105 | 
            +
                        {"value": True, "__type__": "update"},
         | 
| 106 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 107 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 108 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 109 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 110 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 111 | 
            +
                    )
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                else:
         | 
| 115 | 
            +
                    
         | 
| 116 | 
            +
                    DoFormant = False
         | 
| 117 | 
            +
                    CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
         | 
| 118 | 
            +
                    
         | 
| 119 | 
            +
                    #print(f"is checked? - {cbox}\ngot {DoFormant}")
         | 
| 120 | 
            +
                    return (
         | 
| 121 | 
            +
                        {"value": False, "__type__": "update"},
         | 
| 122 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 123 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 124 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 125 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 126 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 127 | 
            +
                        {"visible": False, "__type__": "update"},
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
            def preset_apply(preset, qfer, tmbr):
         | 
| 133 | 
            +
                if str(preset) != '':
         | 
| 134 | 
            +
                    with open(str(preset), 'r') as p:
         | 
| 135 | 
            +
                        content = p.readlines()
         | 
| 136 | 
            +
                        qfer, tmbr = content[0].split('\n')[0], content[1]
         | 
| 137 | 
            +
                        
         | 
| 138 | 
            +
                        formant_apply(qfer, tmbr)
         | 
| 139 | 
            +
                else:
         | 
| 140 | 
            +
                    pass
         | 
| 141 | 
            +
                return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            def update_fshift_presets(preset, qfrency, tmbre):
         | 
| 144 | 
            +
                
         | 
| 145 | 
            +
                qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
         | 
| 146 | 
            +
                
         | 
| 147 | 
            +
                if (str(preset) != ''):
         | 
| 148 | 
            +
                    with open(str(preset), 'r') as p:
         | 
| 149 | 
            +
                        content = p.readlines()
         | 
| 150 | 
            +
                        qfrency, tmbre = content[0].split('\n')[0], content[1]
         | 
| 151 | 
            +
                        
         | 
| 152 | 
            +
                        formant_apply(qfrency, tmbre)
         | 
| 153 | 
            +
                else:
         | 
| 154 | 
            +
                    pass
         | 
| 155 | 
            +
                return (
         | 
| 156 | 
            +
                    {"choices": get_fshift_presets(), "__type__": "update"},
         | 
| 157 | 
            +
                    {"value": qfrency, "__type__": "update"},
         | 
| 158 | 
            +
                    {"value": tmbre, "__type__": "update"},
         | 
| 159 | 
            +
                )
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            i18n = I18nAuto()
         | 
| 162 | 
            +
            #i18n.print()
         | 
| 163 | 
            +
            # 判断是否有能用来训练和加速推理的N卡
         | 
| 164 | 
            +
            ngpu = torch.cuda.device_count()
         | 
| 165 | 
            +
            gpu_infos = []
         | 
| 166 | 
            +
            mem = []
         | 
| 167 | 
            +
            if (not torch.cuda.is_available()) or ngpu == 0:
         | 
| 168 | 
            +
                if_gpu_ok = False
         | 
| 169 | 
            +
            else:
         | 
| 170 | 
            +
                if_gpu_ok = False
         | 
| 171 | 
            +
                for i in range(ngpu):
         | 
| 172 | 
            +
                    gpu_name = torch.cuda.get_device_name(i)
         | 
| 173 | 
            +
                    if (
         | 
| 174 | 
            +
                        "10" in gpu_name
         | 
| 175 | 
            +
                        or "16" in gpu_name
         | 
| 176 | 
            +
                        or "20" in gpu_name
         | 
| 177 | 
            +
                        or "30" in gpu_name
         | 
| 178 | 
            +
                        or "40" in gpu_name
         | 
| 179 | 
            +
                        or "A2" in gpu_name.upper()
         | 
| 180 | 
            +
                        or "A3" in gpu_name.upper()
         | 
| 181 | 
            +
                        or "A4" in gpu_name.upper()
         | 
| 182 | 
            +
                        or "P4" in gpu_name.upper()
         | 
| 183 | 
            +
                        or "A50" in gpu_name.upper()
         | 
| 184 | 
            +
                        or "A60" in gpu_name.upper()
         | 
| 185 | 
            +
                        or "70" in gpu_name
         | 
| 186 | 
            +
                        or "80" in gpu_name
         | 
| 187 | 
            +
                        or "90" in gpu_name
         | 
| 188 | 
            +
                        or "M4" in gpu_name.upper()
         | 
| 189 | 
            +
                        or "T4" in gpu_name.upper()
         | 
| 190 | 
            +
                        or "TITAN" in gpu_name.upper()
         | 
| 191 | 
            +
                    ):  # A10#A100#V100#A40#P40#M40#K80#A4500
         | 
| 192 | 
            +
                        if_gpu_ok = True  # 至少有一张能用的N卡
         | 
| 193 | 
            +
                        gpu_infos.append("%s\t%s" % (i, gpu_name))
         | 
| 194 | 
            +
                        mem.append(
         | 
| 195 | 
            +
                            int(
         | 
| 196 | 
            +
                                torch.cuda.get_device_properties(i).total_memory
         | 
| 197 | 
            +
                                / 1024
         | 
| 198 | 
            +
                                / 1024
         | 
| 199 | 
            +
                                / 1024
         | 
| 200 | 
            +
                                + 0.4
         | 
| 201 | 
            +
                            )
         | 
| 202 | 
            +
                        )
         | 
| 203 | 
            +
            if if_gpu_ok == True and len(gpu_infos) > 0:
         | 
| 204 | 
            +
                gpu_info = "\n".join(gpu_infos)
         | 
| 205 | 
            +
                default_batch_size = min(mem) // 2
         | 
| 206 | 
            +
            else:
         | 
| 207 | 
            +
                gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
         | 
| 208 | 
            +
                default_batch_size = 1
         | 
| 209 | 
            +
            gpus = "-".join([i[0] for i in gpu_infos])
         | 
| 210 | 
            +
            from lib.infer_pack.models import (
         | 
| 211 | 
            +
                SynthesizerTrnMs256NSFsid,
         | 
| 212 | 
            +
                SynthesizerTrnMs256NSFsid_nono,
         | 
| 213 | 
            +
                SynthesizerTrnMs768NSFsid,
         | 
| 214 | 
            +
                SynthesizerTrnMs768NSFsid_nono,
         | 
| 215 | 
            +
            )
         | 
| 216 | 
            +
            import soundfile as sf
         | 
| 217 | 
            +
            from fairseq import checkpoint_utils
         | 
| 218 | 
            +
            import gradio as gr
         | 
| 219 | 
            +
            import logging
         | 
| 220 | 
            +
            from vc_infer_pipeline import VC
         | 
| 221 | 
            +
            from config import Config
         | 
| 222 | 
            +
             | 
| 223 | 
            +
            config = Config()
         | 
| 224 | 
            +
            # from trainset_preprocess_pipeline import PreProcess
         | 
| 225 | 
            +
            logging.getLogger("numba").setLevel(logging.WARNING)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
            hubert_model = None
         | 
| 228 | 
            +
             | 
| 229 | 
            +
            def load_hubert():
         | 
| 230 | 
            +
                global hubert_model
         | 
| 231 | 
            +
                models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
         | 
| 232 | 
            +
                    ["hubert_base.pt"],
         | 
| 233 | 
            +
                    suffix="",
         | 
| 234 | 
            +
                )
         | 
| 235 | 
            +
                hubert_model = models[0]
         | 
| 236 | 
            +
                hubert_model = hubert_model.to(config.device)
         | 
| 237 | 
            +
                if config.is_half:
         | 
| 238 | 
            +
                    hubert_model = hubert_model.half()
         | 
| 239 | 
            +
                else:
         | 
| 240 | 
            +
                    hubert_model = hubert_model.float()
         | 
| 241 | 
            +
                hubert_model.eval()
         | 
| 242 | 
            +
             | 
| 243 | 
            +
             | 
| 244 | 
            +
            weight_root = "weights"
         | 
| 245 | 
            +
            index_root = "logs"
         | 
| 246 | 
            +
            names = []
         | 
| 247 | 
            +
            for name in os.listdir(weight_root):
         | 
| 248 | 
            +
                if name.endswith(".pth"):
         | 
| 249 | 
            +
                    names.append(name)
         | 
| 250 | 
            +
            index_paths = []
         | 
| 251 | 
            +
            for root, dirs, files in os.walk(index_root, topdown=False):
         | 
| 252 | 
            +
                for name in files:
         | 
| 253 | 
            +
                    if name.endswith(".index") and "trained" not in name:
         | 
| 254 | 
            +
                        index_paths.append("%s/%s" % (root, name))
         | 
| 255 | 
            +
             | 
| 256 | 
            +
             | 
| 257 | 
            +
             | 
| 258 | 
            +
            def vc_single(
         | 
| 259 | 
            +
                sid,
         | 
| 260 | 
            +
                input_audio_path,
         | 
| 261 | 
            +
                f0_up_key,
         | 
| 262 | 
            +
                f0_file,
         | 
| 263 | 
            +
                f0_method,
         | 
| 264 | 
            +
                file_index,
         | 
| 265 | 
            +
                #file_index2,
         | 
| 266 | 
            +
                # file_big_npy,
         | 
| 267 | 
            +
                index_rate,
         | 
| 268 | 
            +
                filter_radius,
         | 
| 269 | 
            +
                resample_sr,
         | 
| 270 | 
            +
                rms_mix_rate,
         | 
| 271 | 
            +
                protect,
         | 
| 272 | 
            +
                crepe_hop_length,
         | 
| 273 | 
            +
            ):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
         | 
| 274 | 
            +
                global tgt_sr, net_g, vc, hubert_model, version
         | 
| 275 | 
            +
                if input_audio_path is None:
         | 
| 276 | 
            +
                    return "You need to upload an audio", None
         | 
| 277 | 
            +
                f0_up_key = int(f0_up_key)
         | 
| 278 | 
            +
                try:
         | 
| 279 | 
            +
                    audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
         | 
| 280 | 
            +
                    audio_max = np.abs(audio).max() / 0.95
         | 
| 281 | 
            +
                    if audio_max > 1:
         | 
| 282 | 
            +
                        audio /= audio_max
         | 
| 283 | 
            +
                    times = [0, 0, 0]
         | 
| 284 | 
            +
                    if hubert_model == None:
         | 
| 285 | 
            +
                        load_hubert()
         | 
| 286 | 
            +
                    if_f0 = cpt.get("f0", 1)
         | 
| 287 | 
            +
                    file_index = (
         | 
| 288 | 
            +
                        (
         | 
| 289 | 
            +
                            file_index.strip(" ")
         | 
| 290 | 
            +
                            .strip('"')
         | 
| 291 | 
            +
                            .strip("\n")
         | 
| 292 | 
            +
                            .strip('"')
         | 
| 293 | 
            +
                            .strip(" ")
         | 
| 294 | 
            +
                            .replace("trained", "added")
         | 
| 295 | 
            +
                        )
         | 
| 296 | 
            +
                    )  # 防止小白写错,自动帮他替换掉
         | 
| 297 | 
            +
                    # file_big_npy = (
         | 
| 298 | 
            +
                    #     file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
         | 
| 299 | 
            +
                    # )
         | 
| 300 | 
            +
                    audio_opt = vc.pipeline(
         | 
| 301 | 
            +
                        hubert_model,
         | 
| 302 | 
            +
                        net_g,
         | 
| 303 | 
            +
                        sid,
         | 
| 304 | 
            +
                        audio,
         | 
| 305 | 
            +
                        input_audio_path,
         | 
| 306 | 
            +
                        times,
         | 
| 307 | 
            +
                        f0_up_key,
         | 
| 308 | 
            +
                        f0_method,
         | 
| 309 | 
            +
                        file_index,
         | 
| 310 | 
            +
                        # file_big_npy,
         | 
| 311 | 
            +
                        index_rate,
         | 
| 312 | 
            +
                        if_f0,
         | 
| 313 | 
            +
                        filter_radius,
         | 
| 314 | 
            +
                        tgt_sr,
         | 
| 315 | 
            +
                        resample_sr,
         | 
| 316 | 
            +
                        rms_mix_rate,
         | 
| 317 | 
            +
                        version,
         | 
| 318 | 
            +
                        protect,
         | 
| 319 | 
            +
                        crepe_hop_length,
         | 
| 320 | 
            +
                        f0_file=f0_file,
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
                    if resample_sr >= 16000 and tgt_sr != resample_sr:
         | 
| 323 | 
            +
                        tgt_sr = resample_sr
         | 
| 324 | 
            +
                    index_info = (
         | 
| 325 | 
            +
                        "Using index:%s." % file_index
         | 
| 326 | 
            +
                        if os.path.exists(file_index)
         | 
| 327 | 
            +
                        else "Index not used."
         | 
| 328 | 
            +
                    )
         | 
| 329 | 
            +
                    return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
         | 
| 330 | 
            +
                        index_info,
         | 
| 331 | 
            +
                        times[0],
         | 
| 332 | 
            +
                        times[1],
         | 
| 333 | 
            +
                        times[2],
         | 
| 334 | 
            +
                    ), (tgt_sr, audio_opt)
         | 
| 335 | 
            +
                except:
         | 
| 336 | 
            +
                    info = traceback.format_exc()
         | 
| 337 | 
            +
                    print(info)
         | 
| 338 | 
            +
                    return info, (None, None)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
             | 
| 341 | 
            +
            def vc_multi(
         | 
| 342 | 
            +
                sid,
         | 
| 343 | 
            +
                dir_path,
         | 
| 344 | 
            +
                opt_root,
         | 
| 345 | 
            +
                paths,
         | 
| 346 | 
            +
                f0_up_key,
         | 
| 347 | 
            +
                f0_method,
         | 
| 348 | 
            +
                file_index,
         | 
| 349 | 
            +
                file_index2,
         | 
| 350 | 
            +
                # file_big_npy,
         | 
| 351 | 
            +
                index_rate,
         | 
| 352 | 
            +
                filter_radius,
         | 
| 353 | 
            +
                resample_sr,
         | 
| 354 | 
            +
                rms_mix_rate,
         | 
| 355 | 
            +
                protect,
         | 
| 356 | 
            +
                format1,
         | 
| 357 | 
            +
                crepe_hop_length,
         | 
| 358 | 
            +
            ):
         | 
| 359 | 
            +
                try:
         | 
| 360 | 
            +
                    dir_path = (
         | 
| 361 | 
            +
                        dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
         | 
| 362 | 
            +
                    )  # 防止小白拷路径头尾带了空格和"和回车
         | 
| 363 | 
            +
                    opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
         | 
| 364 | 
            +
                    os.makedirs(opt_root, exist_ok=True)
         | 
| 365 | 
            +
                    try:
         | 
| 366 | 
            +
                        if dir_path != "":
         | 
| 367 | 
            +
                            paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
         | 
| 368 | 
            +
                        else:
         | 
| 369 | 
            +
                            paths = [path.name for path in paths]
         | 
| 370 | 
            +
                    except:
         | 
| 371 | 
            +
                        traceback.print_exc()
         | 
| 372 | 
            +
                        paths = [path.name for path in paths]
         | 
| 373 | 
            +
                    infos = []
         | 
| 374 | 
            +
                    for path in paths:
         | 
| 375 | 
            +
                        info, opt = vc_single(
         | 
| 376 | 
            +
                            sid,
         | 
| 377 | 
            +
                            path,
         | 
| 378 | 
            +
                            f0_up_key,
         | 
| 379 | 
            +
                            None,
         | 
| 380 | 
            +
                            f0_method,
         | 
| 381 | 
            +
                            file_index,
         | 
| 382 | 
            +
                            # file_big_npy,
         | 
| 383 | 
            +
                            index_rate,
         | 
| 384 | 
            +
                            filter_radius,
         | 
| 385 | 
            +
                            resample_sr,
         | 
| 386 | 
            +
                            rms_mix_rate,
         | 
| 387 | 
            +
                            protect,
         | 
| 388 | 
            +
                            crepe_hop_length
         | 
| 389 | 
            +
                        )
         | 
| 390 | 
            +
                        if "Success" in info:
         | 
| 391 | 
            +
                            try:
         | 
| 392 | 
            +
                                tgt_sr, audio_opt = opt
         | 
| 393 | 
            +
                                if format1 in ["wav", "flac"]:
         | 
| 394 | 
            +
                                    sf.write(
         | 
| 395 | 
            +
                                        "%s/%s.%s" % (opt_root, os.path.basename(path), format1),
         | 
| 396 | 
            +
                                        audio_opt,
         | 
| 397 | 
            +
                                        tgt_sr,
         | 
| 398 | 
            +
                                    )
         | 
| 399 | 
            +
                                else:
         | 
| 400 | 
            +
                                    path = "%s/%s.wav" % (opt_root, os.path.basename(path))
         | 
| 401 | 
            +
                                    sf.write(
         | 
| 402 | 
            +
                                        path,
         | 
| 403 | 
            +
                                        audio_opt,
         | 
| 404 | 
            +
                                        tgt_sr,
         | 
| 405 | 
            +
                                    )
         | 
| 406 | 
            +
                                    if os.path.exists(path):
         | 
| 407 | 
            +
                                        os.system(
         | 
| 408 | 
            +
                                            "ffmpeg -i %s -vn %s -q:a 2 -y"
         | 
| 409 | 
            +
                                            % (path, path[:-4] + ".%s" % format1)
         | 
| 410 | 
            +
                                        )
         | 
| 411 | 
            +
                            except:
         | 
| 412 | 
            +
                                info += traceback.format_exc()
         | 
| 413 | 
            +
                        infos.append("%s->%s" % (os.path.basename(path), info))
         | 
| 414 | 
            +
                        yield "\n".join(infos)
         | 
| 415 | 
            +
                    yield "\n".join(infos)
         | 
| 416 | 
            +
                except:
         | 
| 417 | 
            +
                    yield traceback.format_exc()
         | 
| 418 | 
            +
             | 
| 419 | 
            +
            # 一个选项卡全局只能有一个音色
         | 
| 420 | 
            +
            def get_vc(sid):
         | 
| 421 | 
            +
                global n_spk, tgt_sr, net_g, vc, cpt, version
         | 
| 422 | 
            +
                if sid == "" or sid == []:
         | 
| 423 | 
            +
                    global hubert_model
         | 
| 424 | 
            +
                    if hubert_model != None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
         | 
| 425 | 
            +
                        print("clean_empty_cache")
         | 
| 426 | 
            +
                        del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
         | 
| 427 | 
            +
                        hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
         | 
| 428 | 
            +
                        if torch.cuda.is_available():
         | 
| 429 | 
            +
                            torch.cuda.empty_cache()
         | 
| 430 | 
            +
                        ###楼下不这么折腾清理不干净
         | 
| 431 | 
            +
                        if_f0 = cpt.get("f0", 1)
         | 
| 432 | 
            +
                        version = cpt.get("version", "v1")
         | 
| 433 | 
            +
                        if version == "v1":
         | 
| 434 | 
            +
                            if if_f0 == 1:
         | 
| 435 | 
            +
                                net_g = SynthesizerTrnMs256NSFsid(
         | 
| 436 | 
            +
                                    *cpt["config"], is_half=config.is_half
         | 
| 437 | 
            +
                                )
         | 
| 438 | 
            +
                            else:
         | 
| 439 | 
            +
                                net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
         | 
| 440 | 
            +
                        elif version == "v2":
         | 
| 441 | 
            +
                            if if_f0 == 1:
         | 
| 442 | 
            +
                                net_g = SynthesizerTrnMs768NSFsid(
         | 
| 443 | 
            +
                                    *cpt["config"], is_half=config.is_half
         | 
| 444 | 
            +
                                )
         | 
| 445 | 
            +
                            else:
         | 
| 446 | 
            +
                                net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
         | 
| 447 | 
            +
                        del net_g, cpt
         | 
| 448 | 
            +
                        if torch.cuda.is_available():
         | 
| 449 | 
            +
                            torch.cuda.empty_cache()
         | 
| 450 | 
            +
                        cpt = None
         | 
| 451 | 
            +
                    return {"visible": False, "__type__": "update"}
         | 
| 452 | 
            +
                person = "%s/%s" % (weight_root, sid)
         | 
| 453 | 
            +
                print("loading %s" % person)
         | 
| 454 | 
            +
                cpt = torch.load(person, map_location="cpu")
         | 
| 455 | 
            +
                tgt_sr = cpt["config"][-1]
         | 
| 456 | 
            +
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
         | 
| 457 | 
            +
                if_f0 = cpt.get("f0", 1)
         | 
| 458 | 
            +
                version = cpt.get("version", "v1")
         | 
| 459 | 
            +
                if version == "v1":
         | 
| 460 | 
            +
                    if if_f0 == 1:
         | 
| 461 | 
            +
                        net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
         | 
| 462 | 
            +
                    else:
         | 
| 463 | 
            +
                        net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
         | 
| 464 | 
            +
                elif version == "v2":
         | 
| 465 | 
            +
                    if if_f0 == 1:
         | 
| 466 | 
            +
                        net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
         | 
| 467 | 
            +
                    else:
         | 
| 468 | 
            +
                        net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
         | 
| 469 | 
            +
                del net_g.enc_q
         | 
| 470 | 
            +
                print(net_g.load_state_dict(cpt["weight"], strict=False))
         | 
| 471 | 
            +
                net_g.eval().to(config.device)
         | 
| 472 | 
            +
                if config.is_half:
         | 
| 473 | 
            +
                    net_g = net_g.half()
         | 
| 474 | 
            +
                else:
         | 
| 475 | 
            +
                    net_g = net_g.float()
         | 
| 476 | 
            +
                vc = VC(tgt_sr, config)
         | 
| 477 | 
            +
                n_spk = cpt["config"][-3]
         | 
| 478 | 
            +
                return {"visible": False, "maximum": n_spk, "__type__": "update"}
         | 
| 479 | 
            +
             | 
| 480 | 
            +
             | 
| 481 | 
            +
            def change_choices():
         | 
| 482 | 
            +
                names = []
         | 
| 483 | 
            +
                for name in os.listdir(weight_root):
         | 
| 484 | 
            +
                    if name.endswith(".pth"):
         | 
| 485 | 
            +
                        names.append(name)
         | 
| 486 | 
            +
                index_paths = []
         | 
| 487 | 
            +
                for root, dirs, files in os.walk(index_root, topdown=False):
         | 
| 488 | 
            +
                    for name in files:
         | 
| 489 | 
            +
                        if name.endswith(".index") and "trained" not in name:
         | 
| 490 | 
            +
                            index_paths.append("%s/%s" % (root, name))
         | 
| 491 | 
            +
                return {"choices": sorted(names), "__type__": "update"}, {
         | 
| 492 | 
            +
                    "choices": sorted(index_paths),
         | 
| 493 | 
            +
                    "__type__": "update",
         | 
| 494 | 
            +
                }
         | 
| 495 | 
            +
             | 
| 496 | 
            +
             | 
| 497 | 
            +
            def clean():
         | 
| 498 | 
            +
                return {"value": "", "__type__": "update"}
         | 
| 499 | 
            +
             | 
| 500 | 
            +
             | 
| 501 | 
            +
            sr_dict = {
         | 
| 502 | 
            +
                "32k": 32000,
         | 
| 503 | 
            +
                "40k": 40000,
         | 
| 504 | 
            +
                "48k": 48000,
         | 
| 505 | 
            +
            }
         | 
| 506 | 
            +
             | 
| 507 | 
            +
             | 
| 508 | 
            +
            def if_done(done, p):
         | 
| 509 | 
            +
                while 1:
         | 
| 510 | 
            +
                    if p.poll() == None:
         | 
| 511 | 
            +
                        sleep(0.5)
         | 
| 512 | 
            +
                    else:
         | 
| 513 | 
            +
                        break
         | 
| 514 | 
            +
                done[0] = True
         | 
| 515 | 
            +
             | 
| 516 | 
            +
             | 
| 517 | 
            +
            def if_done_multi(done, ps):
         | 
| 518 | 
            +
                while 1:
         | 
| 519 | 
            +
                    # poll==None代表进程未结束
         | 
| 520 | 
            +
                    # 只要有一个进程未结束都不停
         | 
| 521 | 
            +
                    flag = 1
         | 
| 522 | 
            +
                    for p in ps:
         | 
| 523 | 
            +
                        if p.poll() == None:
         | 
| 524 | 
            +
                            flag = 0
         | 
| 525 | 
            +
                            sleep(0.5)
         | 
| 526 | 
            +
                            break
         | 
| 527 | 
            +
                    if flag == 1:
         | 
| 528 | 
            +
                        break
         | 
| 529 | 
            +
                done[0] = True
         | 
| 530 | 
            +
             | 
| 531 | 
            +
             | 
| 532 | 
            +
            def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
         | 
| 533 | 
            +
                sr = sr_dict[sr]
         | 
| 534 | 
            +
                os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
         | 
| 535 | 
            +
                f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
         | 
| 536 | 
            +
                f.close()
         | 
| 537 | 
            +
                cmd = (
         | 
| 538 | 
            +
                    config.python_cmd
         | 
| 539 | 
            +
                    + " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
         | 
| 540 | 
            +
                    % (trainset_dir, sr, n_p, now_dir, exp_dir)
         | 
| 541 | 
            +
                    + str(config.noparallel)
         | 
| 542 | 
            +
                )
         | 
| 543 | 
            +
                print(cmd)
         | 
| 544 | 
            +
                p = Popen(cmd, shell=True)  # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
         | 
| 545 | 
            +
                ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
         | 
| 546 | 
            +
                done = [False]
         | 
| 547 | 
            +
                threading.Thread(
         | 
| 548 | 
            +
                    target=if_done,
         | 
| 549 | 
            +
                    args=(
         | 
| 550 | 
            +
                        done,
         | 
| 551 | 
            +
                        p,
         | 
| 552 | 
            +
                    ),
         | 
| 553 | 
            +
                ).start()
         | 
| 554 | 
            +
                while 1:
         | 
| 555 | 
            +
                    with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
         | 
| 556 | 
            +
                        yield (f.read())
         | 
| 557 | 
            +
                    sleep(1)
         | 
| 558 | 
            +
                    if done[0] == True:
         | 
| 559 | 
            +
                        break
         | 
| 560 | 
            +
                with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
         | 
| 561 | 
            +
                    log = f.read()
         | 
| 562 | 
            +
                print(log)
         | 
| 563 | 
            +
                yield log
         | 
| 564 | 
            +
             | 
| 565 | 
            +
            # but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
         | 
| 566 | 
            +
            def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
         | 
| 567 | 
            +
                gpus = gpus.split("-")
         | 
| 568 | 
            +
                os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
         | 
| 569 | 
            +
                f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
         | 
| 570 | 
            +
                f.close()
         | 
| 571 | 
            +
                if if_f0:
         | 
| 572 | 
            +
                    cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
         | 
| 573 | 
            +
                        now_dir,
         | 
| 574 | 
            +
                        exp_dir,
         | 
| 575 | 
            +
                        n_p,
         | 
| 576 | 
            +
                        f0method,
         | 
| 577 | 
            +
                        echl,
         | 
| 578 | 
            +
                    )
         | 
| 579 | 
            +
                    print(cmd)
         | 
| 580 | 
            +
                    p = Popen(cmd, shell=True, cwd=now_dir)  # , stdin=PIPE, stdout=PIPE,stderr=PIPE
         | 
| 581 | 
            +
                    ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
         | 
| 582 | 
            +
                    done = [False]
         | 
| 583 | 
            +
                    threading.Thread(
         | 
| 584 | 
            +
                        target=if_done,
         | 
| 585 | 
            +
                        args=(
         | 
| 586 | 
            +
                            done,
         | 
| 587 | 
            +
                            p,
         | 
| 588 | 
            +
                        ),
         | 
| 589 | 
            +
                    ).start()
         | 
| 590 | 
            +
                    while 1:
         | 
| 591 | 
            +
                        with open(
         | 
| 592 | 
            +
                            "%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
         | 
| 593 | 
            +
                        ) as f:
         | 
| 594 | 
            +
                            yield (f.read())
         | 
| 595 | 
            +
                        sleep(1)
         | 
| 596 | 
            +
                        if done[0] == True:
         | 
| 597 | 
            +
                            break
         | 
| 598 | 
            +
                    with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
         | 
| 599 | 
            +
                        log = f.read()
         | 
| 600 | 
            +
                    print(log)
         | 
| 601 | 
            +
                    yield log
         | 
| 602 | 
            +
                ####对不同part分别开多进程
         | 
| 603 | 
            +
                """
         | 
| 604 | 
            +
                n_part=int(sys.argv[1])
         | 
| 605 | 
            +
                i_part=int(sys.argv[2])
         | 
| 606 | 
            +
                i_gpu=sys.argv[3]
         | 
| 607 | 
            +
                exp_dir=sys.argv[4]
         | 
| 608 | 
            +
                os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
         | 
| 609 | 
            +
                """
         | 
| 610 | 
            +
                leng = len(gpus)
         | 
| 611 | 
            +
                ps = []
         | 
| 612 | 
            +
                for idx, n_g in enumerate(gpus):
         | 
| 613 | 
            +
                    cmd = (
         | 
| 614 | 
            +
                        config.python_cmd
         | 
| 615 | 
            +
                        + " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
         | 
| 616 | 
            +
                        % (
         | 
| 617 | 
            +
                            config.device,
         | 
| 618 | 
            +
                            leng,
         | 
| 619 | 
            +
                            idx,
         | 
| 620 | 
            +
                            n_g,
         | 
| 621 | 
            +
                            now_dir,
         | 
| 622 | 
            +
                            exp_dir,
         | 
| 623 | 
            +
                            version19,
         | 
| 624 | 
            +
                        )
         | 
| 625 | 
            +
                    )
         | 
| 626 | 
            +
                    print(cmd)
         | 
| 627 | 
            +
                    p = Popen(
         | 
| 628 | 
            +
                        cmd, shell=True, cwd=now_dir
         | 
| 629 | 
            +
                    )  # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
         | 
| 630 | 
            +
                    ps.append(p)
         | 
| 631 | 
            +
                ###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
         | 
| 632 | 
            +
                done = [False]
         | 
| 633 | 
            +
                threading.Thread(
         | 
| 634 | 
            +
                    target=if_done_multi,
         | 
| 635 | 
            +
                    args=(
         | 
| 636 | 
            +
                        done,
         | 
| 637 | 
            +
                        ps,
         | 
| 638 | 
            +
                    ),
         | 
| 639 | 
            +
                ).start()
         | 
| 640 | 
            +
                while 1:
         | 
| 641 | 
            +
                    with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
         | 
| 642 | 
            +
                        yield (f.read())
         | 
| 643 | 
            +
                    sleep(1)
         | 
| 644 | 
            +
                    if done[0] == True:
         | 
| 645 | 
            +
                        break
         | 
| 646 | 
            +
                with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
         | 
| 647 | 
            +
                    log = f.read()
         | 
| 648 | 
            +
                print(log)
         | 
| 649 | 
            +
                yield log
         | 
| 650 | 
            +
             | 
| 651 | 
            +
             | 
| 652 | 
            +
            def change_sr2(sr2, if_f0_3, version19):
         | 
| 653 | 
            +
                path_str = "" if version19 == "v1" else "_v2"
         | 
| 654 | 
            +
                f0_str = "f0" if if_f0_3 else ""
         | 
| 655 | 
            +
                if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
         | 
| 656 | 
            +
                if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
         | 
| 657 | 
            +
                if (if_pretrained_generator_exist == False):
         | 
| 658 | 
            +
                    print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
         | 
| 659 | 
            +
                if (if_pretrained_discriminator_exist == False):
         | 
| 660 | 
            +
                    print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
         | 
| 661 | 
            +
                return (
         | 
| 662 | 
            +
                    ("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
         | 
| 663 | 
            +
                    ("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
         | 
| 664 | 
            +
                    {"visible": True, "__type__": "update"}
         | 
| 665 | 
            +
                )
         | 
| 666 | 
            +
             | 
| 667 | 
            +
            def change_version19(sr2, if_f0_3, version19):
         | 
| 668 | 
            +
                path_str = "" if version19 == "v1" else "_v2"
         | 
| 669 | 
            +
                f0_str = "f0" if if_f0_3 else ""
         | 
| 670 | 
            +
                if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
         | 
| 671 | 
            +
                if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
         | 
| 672 | 
            +
                if (if_pretrained_generator_exist == False):
         | 
| 673 | 
            +
                    print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
         | 
| 674 | 
            +
                if (if_pretrained_discriminator_exist == False):
         | 
| 675 | 
            +
                    print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
         | 
| 676 | 
            +
                return (
         | 
| 677 | 
            +
                    ("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
         | 
| 678 | 
            +
                    ("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
         | 
| 679 | 
            +
                )
         | 
| 680 | 
            +
             | 
| 681 | 
            +
             | 
| 682 | 
            +
            def change_f0(if_f0_3, sr2, version19):  # f0method8,pretrained_G14,pretrained_D15
         | 
| 683 | 
            +
                path_str = "" if version19 == "v1" else "_v2"
         | 
| 684 | 
            +
                if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
         | 
| 685 | 
            +
                if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
         | 
| 686 | 
            +
                if (if_pretrained_generator_exist == False):
         | 
| 687 | 
            +
                    print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
         | 
| 688 | 
            +
                if (if_pretrained_discriminator_exist == False):
         | 
| 689 | 
            +
                    print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
         | 
| 690 | 
            +
                if if_f0_3:
         | 
| 691 | 
            +
                    return (
         | 
| 692 | 
            +
                        {"visible": True, "__type__": "update"},
         | 
| 693 | 
            +
                        "pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
         | 
| 694 | 
            +
                        "pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
         | 
| 695 | 
            +
                    )
         | 
| 696 | 
            +
                return (
         | 
| 697 | 
            +
                    {"visible": False, "__type__": "update"},
         | 
| 698 | 
            +
                    ("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
         | 
| 699 | 
            +
                    ("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
         | 
| 700 | 
            +
                )
         | 
| 701 | 
            +
             | 
| 702 | 
            +
             | 
| 703 | 
            +
            global log_interval
         | 
| 704 | 
            +
             | 
| 705 | 
            +
             | 
| 706 | 
            +
            def set_log_interval(exp_dir, batch_size12):
         | 
| 707 | 
            +
                log_interval = 1
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                folder_path = os.path.join(exp_dir, "1_16k_wavs")
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                if os.path.exists(folder_path) and os.path.isdir(folder_path):
         | 
| 712 | 
            +
                    wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
         | 
| 713 | 
            +
                    if wav_files:
         | 
| 714 | 
            +
                        sample_size = len(wav_files)
         | 
| 715 | 
            +
                        log_interval = math.ceil(sample_size / batch_size12)
         | 
| 716 | 
            +
                        if log_interval > 1:
         | 
| 717 | 
            +
                            log_interval += 1
         | 
| 718 | 
            +
                return log_interval
         | 
| 719 | 
            +
             | 
| 720 | 
            +
            # but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
         | 
| 721 | 
            +
            def click_train(
         | 
| 722 | 
            +
                exp_dir1,
         | 
| 723 | 
            +
                sr2,
         | 
| 724 | 
            +
                if_f0_3,
         | 
| 725 | 
            +
                spk_id5,
         | 
| 726 | 
            +
                save_epoch10,
         | 
| 727 | 
            +
                total_epoch11,
         | 
| 728 | 
            +
                batch_size12,
         | 
| 729 | 
            +
                if_save_latest13,
         | 
| 730 | 
            +
                pretrained_G14,
         | 
| 731 | 
            +
                pretrained_D15,
         | 
| 732 | 
            +
                gpus16,
         | 
| 733 | 
            +
                if_cache_gpu17,
         | 
| 734 | 
            +
                if_save_every_weights18,
         | 
| 735 | 
            +
                version19,
         | 
| 736 | 
            +
            ):
         | 
| 737 | 
            +
                CSVutil('csvdb/stop.csv', 'w+', 'formanting', False)
         | 
| 738 | 
            +
                # 生成filelist
         | 
| 739 | 
            +
                exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
         | 
| 740 | 
            +
                os.makedirs(exp_dir, exist_ok=True)
         | 
| 741 | 
            +
                gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
         | 
| 742 | 
            +
                feature_dir = (
         | 
| 743 | 
            +
                    "%s/3_feature256" % (exp_dir)
         | 
| 744 | 
            +
                    if version19 == "v1"
         | 
| 745 | 
            +
                    else "%s/3_feature768" % (exp_dir)
         | 
| 746 | 
            +
                )
         | 
| 747 | 
            +
                
         | 
| 748 | 
            +
                log_interval = set_log_interval(exp_dir, batch_size12)
         | 
| 749 | 
            +
                
         | 
| 750 | 
            +
                if if_f0_3:
         | 
| 751 | 
            +
                    f0_dir = "%s/2a_f0" % (exp_dir)
         | 
| 752 | 
            +
                    f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
         | 
| 753 | 
            +
                    names = (
         | 
| 754 | 
            +
                        set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
         | 
| 755 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(feature_dir)])
         | 
| 756 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(f0_dir)])
         | 
| 757 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
         | 
| 758 | 
            +
                    )
         | 
| 759 | 
            +
                else:
         | 
| 760 | 
            +
                    names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
         | 
| 761 | 
            +
                        [name.split(".")[0] for name in os.listdir(feature_dir)]
         | 
| 762 | 
            +
                    )
         | 
| 763 | 
            +
                opt = []
         | 
| 764 | 
            +
                for name in names:
         | 
| 765 | 
            +
                    if if_f0_3:
         | 
| 766 | 
            +
                        opt.append(
         | 
| 767 | 
            +
                            "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
         | 
| 768 | 
            +
                            % (
         | 
| 769 | 
            +
                                gt_wavs_dir.replace("\\", "\\\\"),
         | 
| 770 | 
            +
                                name,
         | 
| 771 | 
            +
                                feature_dir.replace("\\", "\\\\"),
         | 
| 772 | 
            +
                                name,
         | 
| 773 | 
            +
                                f0_dir.replace("\\", "\\\\"),
         | 
| 774 | 
            +
                                name,
         | 
| 775 | 
            +
                                f0nsf_dir.replace("\\", "\\\\"),
         | 
| 776 | 
            +
                                name,
         | 
| 777 | 
            +
                                spk_id5,
         | 
| 778 | 
            +
                            )
         | 
| 779 | 
            +
                        )
         | 
| 780 | 
            +
                    else:
         | 
| 781 | 
            +
                        opt.append(
         | 
| 782 | 
            +
                            "%s/%s.wav|%s/%s.npy|%s"
         | 
| 783 | 
            +
                            % (
         | 
| 784 | 
            +
                                gt_wavs_dir.replace("\\", "\\\\"),
         | 
| 785 | 
            +
                                name,
         | 
| 786 | 
            +
                                feature_dir.replace("\\", "\\\\"),
         | 
| 787 | 
            +
                                name,
         | 
| 788 | 
            +
                                spk_id5,
         | 
| 789 | 
            +
                            )
         | 
| 790 | 
            +
                        )
         | 
| 791 | 
            +
                fea_dim = 256 if version19 == "v1" else 768
         | 
| 792 | 
            +
                if if_f0_3:
         | 
| 793 | 
            +
                    for _ in range(2):
         | 
| 794 | 
            +
                        opt.append(
         | 
| 795 | 
            +
                            "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
         | 
| 796 | 
            +
                            % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
         | 
| 797 | 
            +
                        )
         | 
| 798 | 
            +
                else:
         | 
| 799 | 
            +
                    for _ in range(2):
         | 
| 800 | 
            +
                        opt.append(
         | 
| 801 | 
            +
                            "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
         | 
| 802 | 
            +
                            % (now_dir, sr2, now_dir, fea_dim, spk_id5)
         | 
| 803 | 
            +
                        )
         | 
| 804 | 
            +
                shuffle(opt)
         | 
| 805 | 
            +
                with open("%s/filelist.txt" % exp_dir, "w") as f:
         | 
| 806 | 
            +
                    f.write("\n".join(opt))
         | 
| 807 | 
            +
                print("write filelist done")
         | 
| 808 | 
            +
                # 生成config#无需生成config
         | 
| 809 | 
            +
                # cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
         | 
| 810 | 
            +
                print("use gpus:", gpus16)
         | 
| 811 | 
            +
                if pretrained_G14 == "":
         | 
| 812 | 
            +
                    print("no pretrained Generator")
         | 
| 813 | 
            +
                if pretrained_D15 == "":
         | 
| 814 | 
            +
                    print("no pretrained Discriminator")
         | 
| 815 | 
            +
                if gpus16:
         | 
| 816 | 
            +
                    cmd = (
         | 
| 817 | 
            +
                        config.python_cmd
         | 
| 818 | 
            +
                        + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
         | 
| 819 | 
            +
                        % (
         | 
| 820 | 
            +
                            exp_dir1,
         | 
| 821 | 
            +
                            sr2,
         | 
| 822 | 
            +
                            1 if if_f0_3 else 0,
         | 
| 823 | 
            +
                            batch_size12,
         | 
| 824 | 
            +
                            gpus16,
         | 
| 825 | 
            +
                            total_epoch11,
         | 
| 826 | 
            +
                            save_epoch10,
         | 
| 827 | 
            +
                            ("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
         | 
| 828 | 
            +
                            ("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
         | 
| 829 | 
            +
                            1 if if_save_latest13 == True else 0,
         | 
| 830 | 
            +
                            1 if if_cache_gpu17 == True else 0,
         | 
| 831 | 
            +
                            1 if if_save_every_weights18 == True else 0,
         | 
| 832 | 
            +
                            version19,
         | 
| 833 | 
            +
                            log_interval,
         | 
| 834 | 
            +
                        )
         | 
| 835 | 
            +
                    )
         | 
| 836 | 
            +
                else:
         | 
| 837 | 
            +
                    cmd = (
         | 
| 838 | 
            +
                        config.python_cmd
         | 
| 839 | 
            +
                        + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
         | 
| 840 | 
            +
                        % (
         | 
| 841 | 
            +
                            exp_dir1,
         | 
| 842 | 
            +
                            sr2,
         | 
| 843 | 
            +
                            1 if if_f0_3 else 0,
         | 
| 844 | 
            +
                            batch_size12,
         | 
| 845 | 
            +
                            total_epoch11,
         | 
| 846 | 
            +
                            save_epoch10,
         | 
| 847 | 
            +
                            ("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
         | 
| 848 | 
            +
                            ("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
         | 
| 849 | 
            +
                            1 if if_save_latest13 == True else 0,
         | 
| 850 | 
            +
                            1 if if_cache_gpu17 == True else 0,
         | 
| 851 | 
            +
                            1 if if_save_every_weights18 == True else 0,
         | 
| 852 | 
            +
                            version19,
         | 
| 853 | 
            +
                            log_interval,
         | 
| 854 | 
            +
                        )
         | 
| 855 | 
            +
                    )
         | 
| 856 | 
            +
                print(cmd)
         | 
| 857 | 
            +
                p = Popen(cmd, shell=True, cwd=now_dir)
         | 
| 858 | 
            +
                global PID
         | 
| 859 | 
            +
                PID = p.pid
         | 
| 860 | 
            +
                p.wait()
         | 
| 861 | 
            +
                return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
         | 
| 862 | 
            +
             | 
| 863 | 
            +
             | 
| 864 | 
            +
            # but4.click(train_index, [exp_dir1], info3)
         | 
| 865 | 
            +
            def train_index(exp_dir1, version19):
         | 
| 866 | 
            +
                exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
         | 
| 867 | 
            +
                os.makedirs(exp_dir, exist_ok=True)
         | 
| 868 | 
            +
                feature_dir = (
         | 
| 869 | 
            +
                    "%s/3_feature256" % (exp_dir)
         | 
| 870 | 
            +
                    if version19 == "v1"
         | 
| 871 | 
            +
                    else "%s/3_feature768" % (exp_dir)
         | 
| 872 | 
            +
                )
         | 
| 873 | 
            +
                if os.path.exists(feature_dir) == False:
         | 
| 874 | 
            +
                    return "请先进行特征提取!"
         | 
| 875 | 
            +
                listdir_res = list(os.listdir(feature_dir))
         | 
| 876 | 
            +
                if len(listdir_res) == 0:
         | 
| 877 | 
            +
                    return "请先进行特征提取!"
         | 
| 878 | 
            +
                npys = []
         | 
| 879 | 
            +
                for name in sorted(listdir_res):
         | 
| 880 | 
            +
                    phone = np.load("%s/%s" % (feature_dir, name))
         | 
| 881 | 
            +
                    npys.append(phone)
         | 
| 882 | 
            +
                big_npy = np.concatenate(npys, 0)
         | 
| 883 | 
            +
                big_npy_idx = np.arange(big_npy.shape[0])
         | 
| 884 | 
            +
                np.random.shuffle(big_npy_idx)
         | 
| 885 | 
            +
                big_npy = big_npy[big_npy_idx]
         | 
| 886 | 
            +
                np.save("%s/total_fea.npy" % exp_dir, big_npy)
         | 
| 887 | 
            +
                # n_ivf =  big_npy.shape[0] // 39
         | 
| 888 | 
            +
                n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
         | 
| 889 | 
            +
                infos = []
         | 
| 890 | 
            +
                infos.append("%s,%s" % (big_npy.shape, n_ivf))
         | 
| 891 | 
            +
                yield "\n".join(infos)
         | 
| 892 | 
            +
                index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
         | 
| 893 | 
            +
                # index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
         | 
| 894 | 
            +
                infos.append("training")
         | 
| 895 | 
            +
                yield "\n".join(infos)
         | 
| 896 | 
            +
                index_ivf = faiss.extract_index_ivf(index)  #
         | 
| 897 | 
            +
                index_ivf.nprobe = 1
         | 
| 898 | 
            +
                index.train(big_npy)
         | 
| 899 | 
            +
                faiss.write_index(
         | 
| 900 | 
            +
                    index,
         | 
| 901 | 
            +
                    "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 902 | 
            +
                    % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
         | 
| 903 | 
            +
                )
         | 
| 904 | 
            +
                # faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
         | 
| 905 | 
            +
                infos.append("adding")
         | 
| 906 | 
            +
                yield "\n".join(infos)
         | 
| 907 | 
            +
                batch_size_add = 8192
         | 
| 908 | 
            +
                for i in range(0, big_npy.shape[0], batch_size_add):
         | 
| 909 | 
            +
                    index.add(big_npy[i : i + batch_size_add])
         | 
| 910 | 
            +
                faiss.write_index(
         | 
| 911 | 
            +
                    index,
         | 
| 912 | 
            +
                    "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 913 | 
            +
                    % (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
         | 
| 914 | 
            +
                )
         | 
| 915 | 
            +
                infos.append(
         | 
| 916 | 
            +
                    "成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 917 | 
            +
                    % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
         | 
| 918 | 
            +
                )
         | 
| 919 | 
            +
                # faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
         | 
| 920 | 
            +
                # infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
         | 
| 921 | 
            +
                yield "\n".join(infos)
         | 
| 922 | 
            +
             | 
| 923 | 
            +
             | 
| 924 | 
            +
            # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
         | 
| 925 | 
            +
            def train1key(
         | 
| 926 | 
            +
                exp_dir1,
         | 
| 927 | 
            +
                sr2,
         | 
| 928 | 
            +
                if_f0_3,
         | 
| 929 | 
            +
                trainset_dir4,
         | 
| 930 | 
            +
                spk_id5,
         | 
| 931 | 
            +
                np7,
         | 
| 932 | 
            +
                f0method8,
         | 
| 933 | 
            +
                save_epoch10,
         | 
| 934 | 
            +
                total_epoch11,
         | 
| 935 | 
            +
                batch_size12,
         | 
| 936 | 
            +
                if_save_latest13,
         | 
| 937 | 
            +
                pretrained_G14,
         | 
| 938 | 
            +
                pretrained_D15,
         | 
| 939 | 
            +
                gpus16,
         | 
| 940 | 
            +
                if_cache_gpu17,
         | 
| 941 | 
            +
                if_save_every_weights18,
         | 
| 942 | 
            +
                version19,
         | 
| 943 | 
            +
                echl
         | 
| 944 | 
            +
            ):
         | 
| 945 | 
            +
                infos = []
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                def get_info_str(strr):
         | 
| 948 | 
            +
                    infos.append(strr)
         | 
| 949 | 
            +
                    return "\n".join(infos)
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
         | 
| 952 | 
            +
                preprocess_log_path = "%s/preprocess.log" % model_log_dir
         | 
| 953 | 
            +
                extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
         | 
| 954 | 
            +
                gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
         | 
| 955 | 
            +
                feature_dir = (
         | 
| 956 | 
            +
                    "%s/3_feature256" % model_log_dir
         | 
| 957 | 
            +
                    if version19 == "v1"
         | 
| 958 | 
            +
                    else "%s/3_feature768" % model_log_dir
         | 
| 959 | 
            +
                )
         | 
| 960 | 
            +
             | 
| 961 | 
            +
                os.makedirs(model_log_dir, exist_ok=True)
         | 
| 962 | 
            +
                #########step1:处理数据
         | 
| 963 | 
            +
                open(preprocess_log_path, "w").close()
         | 
| 964 | 
            +
                cmd = (
         | 
| 965 | 
            +
                    config.python_cmd
         | 
| 966 | 
            +
                    + " trainset_preprocess_pipeline_print.py %s %s %s %s "
         | 
| 967 | 
            +
                    % (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
         | 
| 968 | 
            +
                    + str(config.noparallel)
         | 
| 969 | 
            +
                )
         | 
| 970 | 
            +
                yield get_info_str(i18n("step1:正在处理数据"))
         | 
| 971 | 
            +
                yield get_info_str(cmd)
         | 
| 972 | 
            +
                p = Popen(cmd, shell=True)
         | 
| 973 | 
            +
                p.wait()
         | 
| 974 | 
            +
                with open(preprocess_log_path, "r") as f:
         | 
| 975 | 
            +
                    print(f.read())
         | 
| 976 | 
            +
                #########step2a:提取音高
         | 
| 977 | 
            +
                open(extract_f0_feature_log_path, "w")
         | 
| 978 | 
            +
                if if_f0_3:
         | 
| 979 | 
            +
                    yield get_info_str("step2a:正在提取音高")
         | 
| 980 | 
            +
                    cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
         | 
| 981 | 
            +
                        model_log_dir,
         | 
| 982 | 
            +
                        np7,
         | 
| 983 | 
            +
                        f0method8,
         | 
| 984 | 
            +
                        echl
         | 
| 985 | 
            +
                    )
         | 
| 986 | 
            +
                    yield get_info_str(cmd)
         | 
| 987 | 
            +
                    p = Popen(cmd, shell=True, cwd=now_dir)
         | 
| 988 | 
            +
                    p.wait()
         | 
| 989 | 
            +
                    with open(extract_f0_feature_log_path, "r") as f:
         | 
| 990 | 
            +
                        print(f.read())
         | 
| 991 | 
            +
                else:
         | 
| 992 | 
            +
                    yield get_info_str(i18n("step2a:无需提取音高"))
         | 
| 993 | 
            +
                #######step2b:提取特征
         | 
| 994 | 
            +
                yield get_info_str(i18n("step2b:正在提取特征"))
         | 
| 995 | 
            +
                gpus = gpus16.split("-")
         | 
| 996 | 
            +
                leng = len(gpus)
         | 
| 997 | 
            +
                ps = []
         | 
| 998 | 
            +
                for idx, n_g in enumerate(gpus):
         | 
| 999 | 
            +
                    cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
         | 
| 1000 | 
            +
                        config.device,
         | 
| 1001 | 
            +
                        leng,
         | 
| 1002 | 
            +
                        idx,
         | 
| 1003 | 
            +
                        n_g,
         | 
| 1004 | 
            +
                        model_log_dir,
         | 
| 1005 | 
            +
                        version19,
         | 
| 1006 | 
            +
                    )
         | 
| 1007 | 
            +
                    yield get_info_str(cmd)
         | 
| 1008 | 
            +
                    p = Popen(
         | 
| 1009 | 
            +
                        cmd, shell=True, cwd=now_dir
         | 
| 1010 | 
            +
                    )  # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
         | 
| 1011 | 
            +
                    ps.append(p)
         | 
| 1012 | 
            +
                for p in ps:
         | 
| 1013 | 
            +
                    p.wait()
         | 
| 1014 | 
            +
                with open(extract_f0_feature_log_path, "r") as f:
         | 
| 1015 | 
            +
                    print(f.read())
         | 
| 1016 | 
            +
                #######step3a:训练模型
         | 
| 1017 | 
            +
                yield get_info_str(i18n("step3a:正在训练模型"))
         | 
| 1018 | 
            +
                # 生成filelist
         | 
| 1019 | 
            +
                if if_f0_3:
         | 
| 1020 | 
            +
                    f0_dir = "%s/2a_f0" % model_log_dir
         | 
| 1021 | 
            +
                    f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
         | 
| 1022 | 
            +
                    names = (
         | 
| 1023 | 
            +
                        set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
         | 
| 1024 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(feature_dir)])
         | 
| 1025 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(f0_dir)])
         | 
| 1026 | 
            +
                        & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
         | 
| 1027 | 
            +
                    )
         | 
| 1028 | 
            +
                else:
         | 
| 1029 | 
            +
                    names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
         | 
| 1030 | 
            +
                        [name.split(".")[0] for name in os.listdir(feature_dir)]
         | 
| 1031 | 
            +
                    )
         | 
| 1032 | 
            +
                opt = []
         | 
| 1033 | 
            +
                for name in names:
         | 
| 1034 | 
            +
                    if if_f0_3:
         | 
| 1035 | 
            +
                        opt.append(
         | 
| 1036 | 
            +
                            "%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
         | 
| 1037 | 
            +
                            % (
         | 
| 1038 | 
            +
                                gt_wavs_dir.replace("\\", "\\\\"),
         | 
| 1039 | 
            +
                                name,
         | 
| 1040 | 
            +
                                feature_dir.replace("\\", "\\\\"),
         | 
| 1041 | 
            +
                                name,
         | 
| 1042 | 
            +
                                f0_dir.replace("\\", "\\\\"),
         | 
| 1043 | 
            +
                                name,
         | 
| 1044 | 
            +
                                f0nsf_dir.replace("\\", "\\\\"),
         | 
| 1045 | 
            +
                                name,
         | 
| 1046 | 
            +
                                spk_id5,
         | 
| 1047 | 
            +
                            )
         | 
| 1048 | 
            +
                        )
         | 
| 1049 | 
            +
                    else:
         | 
| 1050 | 
            +
                        opt.append(
         | 
| 1051 | 
            +
                            "%s/%s.wav|%s/%s.npy|%s"
         | 
| 1052 | 
            +
                            % (
         | 
| 1053 | 
            +
                                gt_wavs_dir.replace("\\", "\\\\"),
         | 
| 1054 | 
            +
                                name,
         | 
| 1055 | 
            +
                                feature_dir.replace("\\", "\\\\"),
         | 
| 1056 | 
            +
                                name,
         | 
| 1057 | 
            +
                                spk_id5,
         | 
| 1058 | 
            +
                            )
         | 
| 1059 | 
            +
                        )
         | 
| 1060 | 
            +
                fea_dim = 256 if version19 == "v1" else 768
         | 
| 1061 | 
            +
                if if_f0_3:
         | 
| 1062 | 
            +
                    for _ in range(2):
         | 
| 1063 | 
            +
                        opt.append(
         | 
| 1064 | 
            +
                            "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
         | 
| 1065 | 
            +
                            % (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
         | 
| 1066 | 
            +
                        )
         | 
| 1067 | 
            +
                else:
         | 
| 1068 | 
            +
                    for _ in range(2):
         | 
| 1069 | 
            +
                        opt.append(
         | 
| 1070 | 
            +
                            "%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
         | 
| 1071 | 
            +
                            % (now_dir, sr2, now_dir, fea_dim, spk_id5)
         | 
| 1072 | 
            +
                        )
         | 
| 1073 | 
            +
                shuffle(opt)
         | 
| 1074 | 
            +
                with open("%s/filelist.txt" % model_log_dir, "w") as f:
         | 
| 1075 | 
            +
                    f.write("\n".join(opt))
         | 
| 1076 | 
            +
                yield get_info_str("write filelist done")
         | 
| 1077 | 
            +
                if gpus16:
         | 
| 1078 | 
            +
                    cmd = (
         | 
| 1079 | 
            +
                        config.python_cmd
         | 
| 1080 | 
            +
                        +" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
         | 
| 1081 | 
            +
                        % (
         | 
| 1082 | 
            +
                            exp_dir1,
         | 
| 1083 | 
            +
                            sr2,
         | 
| 1084 | 
            +
                            1 if if_f0_3 else 0,
         | 
| 1085 | 
            +
                            batch_size12,
         | 
| 1086 | 
            +
                            gpus16,
         | 
| 1087 | 
            +
                            total_epoch11,
         | 
| 1088 | 
            +
                            save_epoch10,
         | 
| 1089 | 
            +
                            ("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
         | 
| 1090 | 
            +
                            ("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
         | 
| 1091 | 
            +
                            1 if if_save_latest13 == True else 0,
         | 
| 1092 | 
            +
                            1 if if_cache_gpu17 == True else 0,
         | 
| 1093 | 
            +
                            1 if if_save_every_weights18 == True else 0,
         | 
| 1094 | 
            +
                            version19,
         | 
| 1095 | 
            +
                        )
         | 
| 1096 | 
            +
                    )
         | 
| 1097 | 
            +
                else:
         | 
| 1098 | 
            +
                    cmd = (
         | 
| 1099 | 
            +
                        config.python_cmd
         | 
| 1100 | 
            +
                        + " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
         | 
| 1101 | 
            +
                        % (
         | 
| 1102 | 
            +
                            exp_dir1,
         | 
| 1103 | 
            +
                            sr2,
         | 
| 1104 | 
            +
                            1 if if_f0_3 else 0,
         | 
| 1105 | 
            +
                            batch_size12,
         | 
| 1106 | 
            +
                            total_epoch11,
         | 
| 1107 | 
            +
                            save_epoch10,
         | 
| 1108 | 
            +
                            ("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
         | 
| 1109 | 
            +
                            ("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
         | 
| 1110 | 
            +
                            1 if if_save_latest13 == True else 0,
         | 
| 1111 | 
            +
                            1 if if_cache_gpu17 == True else 0,
         | 
| 1112 | 
            +
                            1 if if_save_every_weights18 == True else 0,
         | 
| 1113 | 
            +
                            version19,
         | 
| 1114 | 
            +
                        )
         | 
| 1115 | 
            +
                    )
         | 
| 1116 | 
            +
                yield get_info_str(cmd)
         | 
| 1117 | 
            +
                p = Popen(cmd, shell=True, cwd=now_dir)
         | 
| 1118 | 
            +
                p.wait()
         | 
| 1119 | 
            +
                yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
         | 
| 1120 | 
            +
                #######step3b:训练索引
         | 
| 1121 | 
            +
                npys = []
         | 
| 1122 | 
            +
                listdir_res = list(os.listdir(feature_dir))
         | 
| 1123 | 
            +
                for name in sorted(listdir_res):
         | 
| 1124 | 
            +
                    phone = np.load("%s/%s" % (feature_dir, name))
         | 
| 1125 | 
            +
                    npys.append(phone)
         | 
| 1126 | 
            +
                big_npy = np.concatenate(npys, 0)
         | 
| 1127 | 
            +
             | 
| 1128 | 
            +
                big_npy_idx = np.arange(big_npy.shape[0])
         | 
| 1129 | 
            +
                np.random.shuffle(big_npy_idx)
         | 
| 1130 | 
            +
                big_npy = big_npy[big_npy_idx]
         | 
| 1131 | 
            +
                np.save("%s/total_fea.npy" % model_log_dir, big_npy)
         | 
| 1132 | 
            +
             | 
| 1133 | 
            +
                # n_ivf =  big_npy.shape[0] // 39
         | 
| 1134 | 
            +
                n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
         | 
| 1135 | 
            +
                yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
         | 
| 1136 | 
            +
                index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
         | 
| 1137 | 
            +
                yield get_info_str("training index")
         | 
| 1138 | 
            +
                index_ivf = faiss.extract_index_ivf(index)  #
         | 
| 1139 | 
            +
                index_ivf.nprobe = 1
         | 
| 1140 | 
            +
                index.train(big_npy)
         | 
| 1141 | 
            +
                faiss.write_index(
         | 
| 1142 | 
            +
                    index,
         | 
| 1143 | 
            +
                    "%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 1144 | 
            +
                    % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
         | 
| 1145 | 
            +
                )
         | 
| 1146 | 
            +
                yield get_info_str("adding index")
         | 
| 1147 | 
            +
                batch_size_add = 8192
         | 
| 1148 | 
            +
                for i in range(0, big_npy.shape[0], batch_size_add):
         | 
| 1149 | 
            +
                    index.add(big_npy[i : i + batch_size_add])
         | 
| 1150 | 
            +
                faiss.write_index(
         | 
| 1151 | 
            +
                    index,
         | 
| 1152 | 
            +
                    "%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 1153 | 
            +
                    % (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
         | 
| 1154 | 
            +
                )
         | 
| 1155 | 
            +
                yield get_info_str(
         | 
| 1156 | 
            +
                    "成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
         | 
| 1157 | 
            +
                    % (n_ivf, index_ivf.nprobe, exp_dir1, version19)
         | 
| 1158 | 
            +
                )
         | 
| 1159 | 
            +
                yield get_info_str(i18n("全流程结束!"))
         | 
| 1160 | 
            +
             | 
| 1161 | 
            +
             | 
| 1162 | 
            +
            def whethercrepeornah(radio):
         | 
| 1163 | 
            +
                mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
         | 
| 1164 | 
            +
                return ({"visible": mango, "__type__": "update"})
         | 
| 1165 | 
            +
             | 
| 1166 | 
            +
            #                    ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
         | 
| 1167 | 
            +
            def change_info_(ckpt_path):
         | 
| 1168 | 
            +
                if (
         | 
| 1169 | 
            +
                    os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
         | 
| 1170 | 
            +
                    == False
         | 
| 1171 | 
            +
                ):
         | 
| 1172 | 
            +
                    return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
         | 
| 1173 | 
            +
                try:
         | 
| 1174 | 
            +
                    with open(
         | 
| 1175 | 
            +
                        ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
         | 
| 1176 | 
            +
                    ) as f:
         | 
| 1177 | 
            +
                        info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
         | 
| 1178 | 
            +
                        sr, f0 = info["sample_rate"], info["if_f0"]
         | 
| 1179 | 
            +
                        version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
         | 
| 1180 | 
            +
                        return sr, str(f0), version
         | 
| 1181 | 
            +
                except:
         | 
| 1182 | 
            +
                    traceback.print_exc()
         | 
| 1183 | 
            +
                    return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
         | 
| 1184 | 
            +
             | 
| 1185 | 
            +
             | 
| 1186 | 
            +
            from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
         | 
| 1187 | 
            +
             | 
| 1188 | 
            +
             | 
| 1189 | 
            +
            def export_onnx(ModelPath, ExportedPath, MoeVS=True):
         | 
| 1190 | 
            +
                cpt = torch.load(ModelPath, map_location="cpu")
         | 
| 1191 | 
            +
                cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
         | 
| 1192 | 
            +
                hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2]  # hidden_channels,为768Vec做准备
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
                test_phone = torch.rand(1, 200, hidden_channels)  # hidden unit
         | 
| 1195 | 
            +
                test_phone_lengths = torch.tensor([200]).long()  # hidden unit 长度(貌似没啥用)
         | 
| 1196 | 
            +
                test_pitch = torch.randint(size=(1, 200), low=5, high=255)  # 基频(单位赫兹)
         | 
| 1197 | 
            +
                test_pitchf = torch.rand(1, 200)  # nsf基频
         | 
| 1198 | 
            +
                test_ds = torch.LongTensor([0])  # 说话人ID
         | 
| 1199 | 
            +
                test_rnd = torch.rand(1, 192, 200)  # 噪声(加入随机因子)
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                device = "cpu"  # 导出时设备(不影响使用模型)
         | 
| 1202 | 
            +
             | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                net_g = SynthesizerTrnMsNSFsidM(
         | 
| 1205 | 
            +
                    *cpt["config"], is_half=False,version=cpt.get("version","v1")
         | 
| 1206 | 
            +
                )  # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
         | 
| 1207 | 
            +
                net_g.load_state_dict(cpt["weight"], strict=False)
         | 
| 1208 | 
            +
                input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
         | 
| 1209 | 
            +
                output_names = [
         | 
| 1210 | 
            +
                    "audio",
         | 
| 1211 | 
            +
                ]
         | 
| 1212 | 
            +
                # net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
         | 
| 1213 | 
            +
                torch.onnx.export(
         | 
| 1214 | 
            +
                    net_g,
         | 
| 1215 | 
            +
                    (
         | 
| 1216 | 
            +
                        test_phone.to(device),
         | 
| 1217 | 
            +
                        test_phone_lengths.to(device),
         | 
| 1218 | 
            +
                        test_pitch.to(device),
         | 
| 1219 | 
            +
                        test_pitchf.to(device),
         | 
| 1220 | 
            +
                        test_ds.to(device),
         | 
| 1221 | 
            +
                        test_rnd.to(device),
         | 
| 1222 | 
            +
                    ),
         | 
| 1223 | 
            +
                    ExportedPath,
         | 
| 1224 | 
            +
                    dynamic_axes={
         | 
| 1225 | 
            +
                        "phone": [1],
         | 
| 1226 | 
            +
                        "pitch": [1],
         | 
| 1227 | 
            +
                        "pitchf": [1],
         | 
| 1228 | 
            +
                        "rnd": [2],
         | 
| 1229 | 
            +
                    },
         | 
| 1230 | 
            +
                    do_constant_folding=False,
         | 
| 1231 | 
            +
                    opset_version=16,
         | 
| 1232 | 
            +
                    verbose=False,
         | 
| 1233 | 
            +
                    input_names=input_names,
         | 
| 1234 | 
            +
                    output_names=output_names,
         | 
| 1235 | 
            +
                )
         | 
| 1236 | 
            +
                return "Finished"
         | 
| 1237 | 
            +
             | 
| 1238 | 
            +
            #region RVC WebUI App
         | 
| 1239 | 
            +
             | 
| 1240 | 
            +
            def get_presets():
         | 
| 1241 | 
            +
                data = None
         | 
| 1242 | 
            +
                with open('../inference-presets.json', 'r') as file:
         | 
| 1243 | 
            +
                    data = json.load(file)
         | 
| 1244 | 
            +
                preset_names = []
         | 
| 1245 | 
            +
                for preset in data['presets']:
         | 
| 1246 | 
            +
                    preset_names.append(preset['name'])
         | 
| 1247 | 
            +
                
         | 
| 1248 | 
            +
                return preset_names
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
            def change_choices2():
         | 
| 1251 | 
            +
                audio_files=[]
         | 
| 1252 | 
            +
                for filename in os.listdir("./audios"):
         | 
| 1253 | 
            +
                    if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
         | 
| 1254 | 
            +
                        audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
         | 
| 1255 | 
            +
                return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
         | 
| 1256 | 
            +
                
         | 
| 1257 | 
            +
            audio_files=[]
         | 
| 1258 | 
            +
            for filename in os.listdir("./audios"):
         | 
| 1259 | 
            +
                if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
         | 
| 1260 | 
            +
                    audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
         | 
| 1261 | 
            +
                    
         | 
| 1262 | 
            +
            def get_index():
         | 
| 1263 | 
            +
                if check_for_name() != '':
         | 
| 1264 | 
            +
                    chosen_model=sorted(names)[0].split(".")[0]
         | 
| 1265 | 
            +
                    logs_path="./logs/"+chosen_model
         | 
| 1266 | 
            +
                    if os.path.exists(logs_path):
         | 
| 1267 | 
            +
                        for file in os.listdir(logs_path):
         | 
| 1268 | 
            +
                            if file.endswith(".index"):
         | 
| 1269 | 
            +
                                return os.path.join(logs_path, file)
         | 
| 1270 | 
            +
                        return ''
         | 
| 1271 | 
            +
                    else:
         | 
| 1272 | 
            +
                        return ''
         | 
| 1273 | 
            +
                    
         | 
| 1274 | 
            +
            def get_indexes():
         | 
| 1275 | 
            +
                indexes_list=[]
         | 
| 1276 | 
            +
                for dirpath, dirnames, filenames in os.walk("./logs/"):
         | 
| 1277 | 
            +
                    for filename in filenames:
         | 
| 1278 | 
            +
                        if filename.endswith(".index"):
         | 
| 1279 | 
            +
                            indexes_list.append(os.path.join(dirpath,filename))
         | 
| 1280 | 
            +
                if len(indexes_list) > 0:
         | 
| 1281 | 
            +
                    return indexes_list
         | 
| 1282 | 
            +
                else:
         | 
| 1283 | 
            +
                    return ''
         | 
| 1284 | 
            +
                    
         | 
| 1285 | 
            +
            def get_name():
         | 
| 1286 | 
            +
                if len(audio_files) > 0:
         | 
| 1287 | 
            +
                    return sorted(audio_files)[0]
         | 
| 1288 | 
            +
                else:
         | 
| 1289 | 
            +
                    return ''
         | 
| 1290 | 
            +
                    
         | 
| 1291 | 
            +
            def save_to_wav(record_button):
         | 
| 1292 | 
            +
                if record_button is None:
         | 
| 1293 | 
            +
                    pass
         | 
| 1294 | 
            +
                else:
         | 
| 1295 | 
            +
                    path_to_file=record_button
         | 
| 1296 | 
            +
                    new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
         | 
| 1297 | 
            +
                    new_path='./audios/'+new_name
         | 
| 1298 | 
            +
                    shutil.move(path_to_file,new_path)
         | 
| 1299 | 
            +
                    return new_path
         | 
| 1300 | 
            +
                
         | 
| 1301 | 
            +
            def save_to_wav2(dropbox):
         | 
| 1302 | 
            +
                file_path=dropbox.name
         | 
| 1303 | 
            +
                shutil.move(file_path,'./audios')
         | 
| 1304 | 
            +
                return os.path.join('./audios',os.path.basename(file_path))
         | 
| 1305 | 
            +
                
         | 
| 1306 | 
            +
            def match_index(sid0):
         | 
| 1307 | 
            +
                folder=sid0.split(".")[0]
         | 
| 1308 | 
            +
                parent_dir="./logs/"+folder
         | 
| 1309 | 
            +
                if os.path.exists(parent_dir):
         | 
| 1310 | 
            +
                    for filename in os.listdir(parent_dir):
         | 
| 1311 | 
            +
                        if filename.endswith(".index"):
         | 
| 1312 | 
            +
                            index_path=os.path.join(parent_dir,filename)
         | 
| 1313 | 
            +
                            return index_path
         | 
| 1314 | 
            +
                else:
         | 
| 1315 | 
            +
                    return ''
         | 
| 1316 | 
            +
                            
         | 
| 1317 | 
            +
            def check_for_name():
         | 
| 1318 | 
            +
                if len(names) > 0:
         | 
| 1319 | 
            +
                    return sorted(names)[0]
         | 
| 1320 | 
            +
                else:
         | 
| 1321 | 
            +
                    return ''
         | 
| 1322 | 
            +
                        
         | 
| 1323 | 
            +
            def download_from_url(url, model):
         | 
| 1324 | 
            +
                if url == '':
         | 
| 1325 | 
            +
                    return "URL cannot be left empty."
         | 
| 1326 | 
            +
                if model =='':
         | 
| 1327 | 
            +
                    return "You need to name your model. For example: My-Model"
         | 
| 1328 | 
            +
                url = url.strip()
         | 
| 1329 | 
            +
                zip_dirs = ["zips", "unzips"]
         | 
| 1330 | 
            +
                for directory in zip_dirs:
         | 
| 1331 | 
            +
                    if os.path.exists(directory):
         | 
| 1332 | 
            +
                        shutil.rmtree(directory)
         | 
| 1333 | 
            +
                os.makedirs("zips", exist_ok=True)
         | 
| 1334 | 
            +
                os.makedirs("unzips", exist_ok=True)
         | 
| 1335 | 
            +
                zipfile = model + '.zip'
         | 
| 1336 | 
            +
                zipfile_path = './zips/' + zipfile
         | 
| 1337 | 
            +
                try:
         | 
| 1338 | 
            +
                    if "drive.google.com" in url:
         | 
| 1339 | 
            +
                        subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
         | 
| 1340 | 
            +
                    elif "mega.nz" in url:
         | 
| 1341 | 
            +
                        m = Mega()
         | 
| 1342 | 
            +
                        m.download_url(url, './zips')
         | 
| 1343 | 
            +
                    else:
         | 
| 1344 | 
            +
                        subprocess.run(["wget", url, "-O", zipfile_path])
         | 
| 1345 | 
            +
                    for filename in os.listdir("./zips"):
         | 
| 1346 | 
            +
                        if filename.endswith(".zip"):
         | 
| 1347 | 
            +
                            zipfile_path = os.path.join("./zips/",filename)
         | 
| 1348 | 
            +
                            shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
         | 
| 1349 | 
            +
                        else:
         | 
| 1350 | 
            +
                            return "No zipfile found."
         | 
| 1351 | 
            +
                    for root, dirs, files in os.walk('./unzips'):
         | 
| 1352 | 
            +
                        for file in files:
         | 
| 1353 | 
            +
                            file_path = os.path.join(root, file)
         | 
| 1354 | 
            +
                            if file.endswith(".index"):
         | 
| 1355 | 
            +
                                os.mkdir(f'./logs/{model}')
         | 
| 1356 | 
            +
                                shutil.copy2(file_path,f'./logs/{model}')
         | 
| 1357 | 
            +
                            elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
         | 
| 1358 | 
            +
                                shutil.copy(file_path,f'./weights/{model}.pth')
         | 
| 1359 | 
            +
                    shutil.rmtree("zips")
         | 
| 1360 | 
            +
                    shutil.rmtree("unzips")
         | 
| 1361 | 
            +
                    return "Success."
         | 
| 1362 | 
            +
                except:
         | 
| 1363 | 
            +
                    return "There's been an error."
         | 
| 1364 | 
            +
            def success_message(face):
         | 
| 1365 | 
            +
                return f'{face.name} has been uploaded.', 'None'
         | 
| 1366 | 
            +
            def mouth(size, face, voice, faces):
         | 
| 1367 | 
            +
                if size == 'Half':
         | 
| 1368 | 
            +
                    size = 2
         | 
| 1369 | 
            +
                else:
         | 
| 1370 | 
            +
                    size = 1
         | 
| 1371 | 
            +
                if faces == 'None':
         | 
| 1372 | 
            +
                    character = face.name
         | 
| 1373 | 
            +
                else:
         | 
| 1374 | 
            +
                    if faces == 'Ben Shapiro':
         | 
| 1375 | 
            +
                        character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
         | 
| 1376 | 
            +
                    elif faces == 'Andrew Tate':
         | 
| 1377 | 
            +
                        character = '/content/wav2lip-HD/inputs/tate-7.mp4'
         | 
| 1378 | 
            +
                command = "python inference.py " \
         | 
| 1379 | 
            +
                        "--checkpoint_path checkpoints/wav2lip.pth " \
         | 
| 1380 | 
            +
                        f"--face {character} " \
         | 
| 1381 | 
            +
                        f"--audio {voice} " \
         | 
| 1382 | 
            +
                        "--pads 0 20 0 0 " \
         | 
| 1383 | 
            +
                        "--outfile /content/wav2lip-HD/outputs/result.mp4 " \
         | 
| 1384 | 
            +
                        "--fps 24 " \
         | 
| 1385 | 
            +
                        f"--resize_factor {size}"
         | 
| 1386 | 
            +
                process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
         | 
| 1387 | 
            +
                stdout, stderr = process.communicate()
         | 
| 1388 | 
            +
                return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
         | 
| 1389 | 
            +
            eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
         | 
| 1390 | 
            +
            eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
         | 
| 1391 | 
            +
            chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))
         | 
| 1392 | 
            +
             | 
| 1393 | 
            +
            def stoptraining(mim): 
         | 
| 1394 | 
            +
                if int(mim) == 1:
         | 
| 1395 | 
            +
                    try:
         | 
| 1396 | 
            +
                        CSVutil('csvdb/stop.csv', 'w+', 'stop', 'True')
         | 
| 1397 | 
            +
                        os.kill(PID, signal.SIGTERM)
         | 
| 1398 | 
            +
                    except Exception as e:
         | 
| 1399 | 
            +
                        print(f"Couldn't click due to {e}")
         | 
| 1400 | 
            +
                return (
         | 
| 1401 | 
            +
                    {"visible": False, "__type__": "update"}, 
         | 
| 1402 | 
            +
                    {"visible": True, "__type__": "update"},
         | 
| 1403 | 
            +
                )
         | 
| 1404 | 
            +
             | 
| 1405 | 
            +
             | 
| 1406 | 
            +
            def elevenTTS(xiapi, text, id, lang):
         | 
| 1407 | 
            +
                if xiapi!= '' and id !='': 
         | 
| 1408 | 
            +
                    choice = chosen_voice[id]
         | 
| 1409 | 
            +
                    CHUNK_SIZE = 1024
         | 
| 1410 | 
            +
                    url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
         | 
| 1411 | 
            +
                    headers = {
         | 
| 1412 | 
            +
                    "Accept": "audio/mpeg",
         | 
| 1413 | 
            +
                    "Content-Type": "application/json",
         | 
| 1414 | 
            +
                    "xi-api-key": xiapi
         | 
| 1415 | 
            +
                    }
         | 
| 1416 | 
            +
                    if lang == 'en':
         | 
| 1417 | 
            +
                        data = {
         | 
| 1418 | 
            +
                        "text": text,
         | 
| 1419 | 
            +
                        "model_id": "eleven_monolingual_v1",
         | 
| 1420 | 
            +
                        "voice_settings": {
         | 
| 1421 | 
            +
                        "stability": 0.5,
         | 
| 1422 | 
            +
                        "similarity_boost": 0.5
         | 
| 1423 | 
            +
                        }
         | 
| 1424 | 
            +
                        }
         | 
| 1425 | 
            +
                    else:
         | 
| 1426 | 
            +
                        data = {
         | 
| 1427 | 
            +
                        "text": text,
         | 
| 1428 | 
            +
                        "model_id": "eleven_multilingual_v1",
         | 
| 1429 | 
            +
                        "voice_settings": {
         | 
| 1430 | 
            +
                        "stability": 0.5,
         | 
| 1431 | 
            +
                        "similarity_boost": 0.5
         | 
| 1432 | 
            +
                        }
         | 
| 1433 | 
            +
                        }
         | 
| 1434 | 
            +
             | 
| 1435 | 
            +
                    response = requests.post(url, json=data, headers=headers)
         | 
| 1436 | 
            +
                    with open('./temp_eleven.mp3', 'wb') as f:
         | 
| 1437 | 
            +
                      for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
         | 
| 1438 | 
            +
                          if chunk:
         | 
| 1439 | 
            +
                              f.write(chunk)
         | 
| 1440 | 
            +
                    aud_path = save_to_wav('./temp_eleven.mp3')
         | 
| 1441 | 
            +
                    return aud_path, aud_path
         | 
| 1442 | 
            +
                else:
         | 
| 1443 | 
            +
                    tts = gTTS(text, lang=lang)
         | 
| 1444 | 
            +
                    tts.save('./temp_gTTS.mp3')
         | 
| 1445 | 
            +
                    aud_path = save_to_wav('./temp_gTTS.mp3')
         | 
| 1446 | 
            +
                    return aud_path, aud_path
         | 
| 1447 | 
            +
             | 
| 1448 | 
            +
            def upload_to_dataset(files, dir):
         | 
| 1449 | 
            +
                if dir == '':
         | 
| 1450 | 
            +
                    dir = './dataset'
         | 
| 1451 | 
            +
                if not os.path.exists(dir):
         | 
| 1452 | 
            +
                    os.makedirs(dir)
         | 
| 1453 | 
            +
                count = 0
         | 
| 1454 | 
            +
                for file in files:
         | 
| 1455 | 
            +
                    path=file.name
         | 
| 1456 | 
            +
                    shutil.copy2(path,dir)
         | 
| 1457 | 
            +
                    count += 1
         | 
| 1458 | 
            +
                return f' {count} files uploaded to {dir}.'     
         | 
| 1459 | 
            +
                
         | 
| 1460 | 
            +
            def zip_downloader(model):
         | 
| 1461 | 
            +
                if not os.path.exists(f'./weights/{model}.pth'):
         | 
| 1462 | 
            +
                    return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
         | 
| 1463 | 
            +
                index_found = False
         | 
| 1464 | 
            +
                for file in os.listdir(f'./logs/{model}'):
         | 
| 1465 | 
            +
                    if file.endswith('.index') and 'added' in file:
         | 
| 1466 | 
            +
                        log_file = file
         | 
| 1467 | 
            +
                        index_found = True
         | 
| 1468 | 
            +
                if index_found:
         | 
| 1469 | 
            +
                    return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
         | 
| 1470 | 
            +
                else:
         | 
| 1471 | 
            +
                    return f'./weights/{model}.pth', "Could not find Index file."
         | 
| 1472 | 
            +
             | 
| 1473 | 
            +
            with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
         | 
| 1474 | 
            +
                with gr.Tabs():
         | 
| 1475 | 
            +
                    with gr.TabItem("Inference"):
         | 
| 1476 | 
            +
                        gr.HTML("<h1>  RVC V2 Huggingface Version </h1>")      
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
                        # Inference Preset Row
         | 
| 1479 | 
            +
                        # with gr.Row():
         | 
| 1480 | 
            +
                        #     mangio_preset = gr.Dropdown(label="Inference Preset", choices=sorted(get_presets()))
         | 
| 1481 | 
            +
                        #     mangio_preset_name_save = gr.Textbox(
         | 
| 1482 | 
            +
                        #         label="Your preset name"
         | 
| 1483 | 
            +
                        #     )
         | 
| 1484 | 
            +
                        #     mangio_preset_save_btn = gr.Button('Save Preset', variant="primary")
         | 
| 1485 | 
            +
             | 
| 1486 | 
            +
                        # Other RVC stuff
         | 
| 1487 | 
            +
                        with gr.Row():
         | 
| 1488 | 
            +
                            sid0 = gr.Dropdown(label="1.Choose your Model.", choices=sorted(names), value=check_for_name())
         | 
| 1489 | 
            +
                            refresh_button = gr.Button("Refresh", variant="primary")
         | 
| 1490 | 
            +
                            if check_for_name() != '':
         | 
| 1491 | 
            +
                                get_vc(sorted(names)[0])
         | 
| 1492 | 
            +
                            vc_transform0 = gr.Number(label="Optional: You can change the pitch here or leave it at 0.", value=0)
         | 
| 1493 | 
            +
                            #clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
         | 
| 1494 | 
            +
                            spk_item = gr.Slider(
         | 
| 1495 | 
            +
                                minimum=0,
         | 
| 1496 | 
            +
                                maximum=2333,
         | 
| 1497 | 
            +
                                step=1,
         | 
| 1498 | 
            +
                                label=i18n("请选择说话人id"),
         | 
| 1499 | 
            +
                                value=0,
         | 
| 1500 | 
            +
                                visible=False,
         | 
| 1501 | 
            +
                                interactive=True,
         | 
| 1502 | 
            +
                            )
         | 
| 1503 | 
            +
                            #clean_button.click(fn=clean, inputs=[], outputs=[sid0])
         | 
| 1504 | 
            +
                            sid0.change(
         | 
| 1505 | 
            +
                                fn=get_vc,
         | 
| 1506 | 
            +
                                inputs=[sid0],
         | 
| 1507 | 
            +
                                outputs=[spk_item],
         | 
| 1508 | 
            +
                            )
         | 
| 1509 | 
            +
                            but0 = gr.Button("Convert", variant="primary")
         | 
| 1510 | 
            +
                        with gr.Row():
         | 
| 1511 | 
            +
                            with gr.Column():
         | 
| 1512 | 
            +
                                with gr.Row():
         | 
| 1513 | 
            +
                                    dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
         | 
| 1514 | 
            +
                                with gr.Row():
         | 
| 1515 | 
            +
                                    record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
         | 
| 1516 | 
            +
                                with gr.Row():
         | 
| 1517 | 
            +
                                    input_audio0 = gr.Dropdown(
         | 
| 1518 | 
            +
                                        label="2.Choose your audio.",
         | 
| 1519 | 
            +
                                        value="./audios/someguy.mp3",
         | 
| 1520 | 
            +
                                        choices=audio_files
         | 
| 1521 | 
            +
                                        )
         | 
| 1522 | 
            +
                                    dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
         | 
| 1523 | 
            +
                                    dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
         | 
| 1524 | 
            +
                                    refresh_button2 = gr.Button("Refresh", variant="primary", size='sm')
         | 
| 1525 | 
            +
                                    record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
         | 
| 1526 | 
            +
                                    record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0])
         | 
| 1527 | 
            +
                                with gr.Row():
         | 
| 1528 | 
            +
                                    with gr.Accordion('Text To Speech', open=False):
         | 
| 1529 | 
            +
                                        with gr.Column():
         | 
| 1530 | 
            +
                                            lang = gr.Radio(label='Chinese & Japanese do not work with ElevenLabs currently.',choices=['en','es','fr','pt','zh-CN','de','hi','ja'], value='en')
         | 
| 1531 | 
            +
                                            api_box = gr.Textbox(label="Enter your API Key for ElevenLabs, or leave empty to use GoogleTTS", value='')
         | 
| 1532 | 
            +
                                            elevenid=gr.Dropdown(label="Voice:", choices=eleven_voices)
         | 
| 1533 | 
            +
                                        with gr.Column():
         | 
| 1534 | 
            +
                                            tfs = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
         | 
| 1535 | 
            +
                                            tts_button = gr.Button(value="Speak")
         | 
| 1536 | 
            +
                                            tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0])
         | 
| 1537 | 
            +
                                with gr.Row():
         | 
| 1538 | 
            +
                                    with gr.Accordion('Wav2Lip', open=False):
         | 
| 1539 | 
            +
                                        with gr.Row():
         | 
| 1540 | 
            +
                                            size = gr.Radio(label='Resolution:',choices=['Half','Full'])
         | 
| 1541 | 
            +
                                            face = gr.UploadButton("Upload A Character",type='file')
         | 
| 1542 | 
            +
                                            faces = gr.Dropdown(label="OR Choose one:", choices=['None','Ben Shapiro','Andrew Tate'])
         | 
| 1543 | 
            +
                                        with gr.Row():
         | 
| 1544 | 
            +
                                            preview = gr.Textbox(label="Status:",interactive=False)
         | 
| 1545 | 
            +
                                            face.upload(fn=success_message,inputs=[face], outputs=[preview, faces])
         | 
| 1546 | 
            +
                                        with gr.Row():
         | 
| 1547 | 
            +
                                            animation = gr.Video(type='filepath')
         | 
| 1548 | 
            +
                                            refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation])
         | 
| 1549 | 
            +
                                        with gr.Row():
         | 
| 1550 | 
            +
                                            animate_button = gr.Button('Animate')
         | 
| 1551 | 
            +
             | 
| 1552 | 
            +
                            with gr.Column():
         | 
| 1553 | 
            +
                                with gr.Accordion("Index Settings", open=False):
         | 
| 1554 | 
            +
                                    file_index1 = gr.Dropdown(
         | 
| 1555 | 
            +
                                        label="3. Path to your added.index file (if it didn't automatically find it.)",
         | 
| 1556 | 
            +
                                        choices=get_indexes(),
         | 
| 1557 | 
            +
                                        value=get_index(),
         | 
| 1558 | 
            +
                                        interactive=True,
         | 
| 1559 | 
            +
                                        )
         | 
| 1560 | 
            +
                                    sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1])
         | 
| 1561 | 
            +
                                    refresh_button.click(
         | 
| 1562 | 
            +
                                        fn=change_choices, inputs=[], outputs=[sid0, file_index1]
         | 
| 1563 | 
            +
                                        )
         | 
| 1564 | 
            +
                                    # file_big_npy1 = gr.Textbox(
         | 
| 1565 | 
            +
                                    #     label=i18n("特征文件路径"),
         | 
| 1566 | 
            +
                                    #     value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
         | 
| 1567 | 
            +
                                    #     interactive=True,
         | 
| 1568 | 
            +
                                    # )
         | 
| 1569 | 
            +
                                    index_rate1 = gr.Slider(
         | 
| 1570 | 
            +
                                        minimum=0,
         | 
| 1571 | 
            +
                                        maximum=1,
         | 
| 1572 | 
            +
                                        label=i18n("检索特征占比"),
         | 
| 1573 | 
            +
                                        value=0.66,
         | 
| 1574 | 
            +
                                        interactive=True,
         | 
| 1575 | 
            +
                                        )
         | 
| 1576 | 
            +
                                vc_output2 = gr.Audio(
         | 
| 1577 | 
            +
                                    label="Output Audio (Click on the Three Dots in the Right Corner to Download)",
         | 
| 1578 | 
            +
                                    type='filepath',
         | 
| 1579 | 
            +
                                    interactive=False,
         | 
| 1580 | 
            +
                                )
         | 
| 1581 | 
            +
                                animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview])
         | 
| 1582 | 
            +
                                with gr.Accordion("Advanced Settings", open=False):
         | 
| 1583 | 
            +
                                    f0method0 = gr.Radio(
         | 
| 1584 | 
            +
                                        label="Optional: Change the Pitch Extraction Algorithm.\nExtraction methods are sorted from 'worst quality' to 'best quality'.\nmangio-crepe may or may not be better than rmvpe in cases where 'smoothness' is more important, but rmvpe is the best overall.",
         | 
| 1585 | 
            +
                                        choices=["pm", "dio", "crepe-tiny", "mangio-crepe-tiny", "crepe", "harvest", "mangio-crepe", "rmvpe"], # Fork Feature. Add Crepe-Tiny
         | 
| 1586 | 
            +
                                        value="rmvpe",
         | 
| 1587 | 
            +
                                        interactive=True,
         | 
| 1588 | 
            +
                                    )
         | 
| 1589 | 
            +
                                    
         | 
| 1590 | 
            +
                                    crepe_hop_length = gr.Slider(
         | 
| 1591 | 
            +
                                        minimum=1,
         | 
| 1592 | 
            +
                                        maximum=512,
         | 
| 1593 | 
            +
                                        step=1,
         | 
| 1594 | 
            +
                                        label="Mangio-Crepe Hop Length. Higher numbers will reduce the chance of extreme pitch changes but lower numbers will increase accuracy. 64-192 is a good range to experiment with.",
         | 
| 1595 | 
            +
                                        value=120,
         | 
| 1596 | 
            +
                                        interactive=True,
         | 
| 1597 | 
            +
                                        visible=False,
         | 
| 1598 | 
            +
                                        )
         | 
| 1599 | 
            +
                                    f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
         | 
| 1600 | 
            +
                                    filter_radius0 = gr.Slider(
         | 
| 1601 | 
            +
                                        minimum=0,
         | 
| 1602 | 
            +
                                        maximum=7,
         | 
| 1603 | 
            +
                                        label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
         | 
| 1604 | 
            +
                                        value=3,
         | 
| 1605 | 
            +
                                        step=1,
         | 
| 1606 | 
            +
                                        interactive=True,
         | 
| 1607 | 
            +
                                        )
         | 
| 1608 | 
            +
                                    resample_sr0 = gr.Slider(
         | 
| 1609 | 
            +
                                        minimum=0,
         | 
| 1610 | 
            +
                                        maximum=48000,
         | 
| 1611 | 
            +
                                        label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
         | 
| 1612 | 
            +
                                        value=0,
         | 
| 1613 | 
            +
                                        step=1,
         | 
| 1614 | 
            +
                                        interactive=True,
         | 
| 1615 | 
            +
                                        visible=False
         | 
| 1616 | 
            +
                                        )
         | 
| 1617 | 
            +
                                    rms_mix_rate0 = gr.Slider(
         | 
| 1618 | 
            +
                                        minimum=0,
         | 
| 1619 | 
            +
                                        maximum=1,
         | 
| 1620 | 
            +
                                        label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
         | 
| 1621 | 
            +
                                        value=0.21,
         | 
| 1622 | 
            +
                                        interactive=True,
         | 
| 1623 | 
            +
                                        )
         | 
| 1624 | 
            +
                                    protect0 = gr.Slider(
         | 
| 1625 | 
            +
                                        minimum=0,
         | 
| 1626 | 
            +
                                        maximum=0.5,
         | 
| 1627 | 
            +
                                        label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
         | 
| 1628 | 
            +
                                        value=0.33,
         | 
| 1629 | 
            +
                                        step=0.01,
         | 
| 1630 | 
            +
                                        interactive=True,
         | 
| 1631 | 
            +
                                        )
         | 
| 1632 | 
            +
                                    formanting = gr.Checkbox(
         | 
| 1633 | 
            +
                                        value=bool(DoFormant),
         | 
| 1634 | 
            +
                                        label="[EXPERIMENTAL] Formant shift inference audio",
         | 
| 1635 | 
            +
                                        info="Used for male to female and vice-versa conversions",
         | 
| 1636 | 
            +
                                        interactive=True,
         | 
| 1637 | 
            +
                                        visible=True,
         | 
| 1638 | 
            +
                                    )
         | 
| 1639 | 
            +
                                    
         | 
| 1640 | 
            +
                                    formant_preset = gr.Dropdown(
         | 
| 1641 | 
            +
                                        value='',
         | 
| 1642 | 
            +
                                        choices=get_fshift_presets(),
         | 
| 1643 | 
            +
                                        label="browse presets for formanting",
         | 
| 1644 | 
            +
                                        visible=bool(DoFormant),
         | 
| 1645 | 
            +
                                    )
         | 
| 1646 | 
            +
                                    formant_refresh_button = gr.Button(
         | 
| 1647 | 
            +
                                        value='\U0001f504',
         | 
| 1648 | 
            +
                                        visible=bool(DoFormant),
         | 
| 1649 | 
            +
                                        variant='primary',
         | 
| 1650 | 
            +
                                    )
         | 
| 1651 | 
            +
                                    #formant_refresh_button = ToolButton( elem_id='1')
         | 
| 1652 | 
            +
                                    #create_refresh_button(formant_preset, lambda: {"choices": formant_preset}, "refresh_list_shiftpresets")
         | 
| 1653 | 
            +
                                    
         | 
| 1654 | 
            +
                                    qfrency = gr.Slider(
         | 
| 1655 | 
            +
                                            value=Quefrency,
         | 
| 1656 | 
            +
                                            info="Default value is 1.0",
         | 
| 1657 | 
            +
                                            label="Quefrency for formant shifting",
         | 
| 1658 | 
            +
                                            minimum=0.0,
         | 
| 1659 | 
            +
                                            maximum=16.0,
         | 
| 1660 | 
            +
                                            step=0.1,
         | 
| 1661 | 
            +
                                            visible=bool(DoFormant),
         | 
| 1662 | 
            +
                                            interactive=True,
         | 
| 1663 | 
            +
                                        )
         | 
| 1664 | 
            +
                                    tmbre = gr.Slider(
         | 
| 1665 | 
            +
                                        value=Timbre,
         | 
| 1666 | 
            +
                                        info="Default value is 1.0",
         | 
| 1667 | 
            +
                                        label="Timbre for formant shifting",
         | 
| 1668 | 
            +
                                        minimum=0.0,
         | 
| 1669 | 
            +
                                        maximum=16.0,
         | 
| 1670 | 
            +
                                        step=0.1,
         | 
| 1671 | 
            +
                                        visible=bool(DoFormant),
         | 
| 1672 | 
            +
                                        interactive=True,
         | 
| 1673 | 
            +
                                    )
         | 
| 1674 | 
            +
                                    
         | 
| 1675 | 
            +
                                    formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
         | 
| 1676 | 
            +
                                    frmntbut = gr.Button("Apply", variant="primary", visible=bool(DoFormant))
         | 
| 1677 | 
            +
                                    formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
         | 
| 1678 | 
            +
                                    frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
         | 
| 1679 | 
            +
                                    formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
         | 
| 1680 | 
            +
                        with gr.Row():
         | 
| 1681 | 
            +
                            vc_output1 = gr.Textbox("")
         | 
| 1682 | 
            +
                            f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
         | 
| 1683 | 
            +
                            
         | 
| 1684 | 
            +
                            but0.click(
         | 
| 1685 | 
            +
                                vc_single,
         | 
| 1686 | 
            +
                                [
         | 
| 1687 | 
            +
                                    spk_item,
         | 
| 1688 | 
            +
                                    input_audio0,
         | 
| 1689 | 
            +
                                    vc_transform0,
         | 
| 1690 | 
            +
                                    f0_file,
         | 
| 1691 | 
            +
                                    f0method0,
         | 
| 1692 | 
            +
                                    file_index1,
         | 
| 1693 | 
            +
                                    # file_index2,
         | 
| 1694 | 
            +
                                    # file_big_npy1,
         | 
| 1695 | 
            +
                                    index_rate1,
         | 
| 1696 | 
            +
                                    filter_radius0,
         | 
| 1697 | 
            +
                                    resample_sr0,
         | 
| 1698 | 
            +
                                    rms_mix_rate0,
         | 
| 1699 | 
            +
                                    protect0,
         | 
| 1700 | 
            +
                                    crepe_hop_length
         | 
| 1701 | 
            +
                                ],
         | 
| 1702 | 
            +
                                [vc_output1, vc_output2],
         | 
| 1703 | 
            +
                            )
         | 
| 1704 | 
            +
                                    
         | 
| 1705 | 
            +
                        with gr.Accordion("Batch Conversion",open=False):
         | 
| 1706 | 
            +
                            with gr.Row():
         | 
| 1707 | 
            +
                                with gr.Column():
         | 
| 1708 | 
            +
                                    vc_transform1 = gr.Number(
         | 
| 1709 | 
            +
                                        label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
         | 
| 1710 | 
            +
                                    )
         | 
| 1711 | 
            +
                                    opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
         | 
| 1712 | 
            +
                                    f0method1 = gr.Radio(
         | 
| 1713 | 
            +
                                        label=i18n(
         | 
| 1714 | 
            +
                                            "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
         | 
| 1715 | 
            +
                                        ),
         | 
| 1716 | 
            +
                                        choices=["pm", "harvest", "crepe", "rmvpe"],
         | 
| 1717 | 
            +
                                        value="rmvpe",
         | 
| 1718 | 
            +
                                        interactive=True,
         | 
| 1719 | 
            +
                                    )
         | 
| 1720 | 
            +
                                    filter_radius1 = gr.Slider(
         | 
| 1721 | 
            +
                                        minimum=0,
         | 
| 1722 | 
            +
                                        maximum=7,
         | 
| 1723 | 
            +
                                        label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
         | 
| 1724 | 
            +
                                        value=3,
         | 
| 1725 | 
            +
                                        step=1,
         | 
| 1726 | 
            +
                                        interactive=True,
         | 
| 1727 | 
            +
                                    )
         | 
| 1728 | 
            +
                                with gr.Column():
         | 
| 1729 | 
            +
                                    file_index3 = gr.Textbox(
         | 
| 1730 | 
            +
                                        label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
         | 
| 1731 | 
            +
                                        value="",
         | 
| 1732 | 
            +
                                        interactive=True,
         | 
| 1733 | 
            +
                                    )
         | 
| 1734 | 
            +
                                    file_index4 = gr.Dropdown(
         | 
| 1735 | 
            +
                                        label=i18n("自动检测index路径,下拉式选择(dropdown)"),
         | 
| 1736 | 
            +
                                        choices=sorted(index_paths),
         | 
| 1737 | 
            +
                                        interactive=True,
         | 
| 1738 | 
            +
                                    )
         | 
| 1739 | 
            +
                                    refresh_button.click(
         | 
| 1740 | 
            +
                                        fn=lambda: change_choices()[1],
         | 
| 1741 | 
            +
                                        inputs=[],
         | 
| 1742 | 
            +
                                        outputs=file_index4,
         | 
| 1743 | 
            +
                                    )
         | 
| 1744 | 
            +
                                    # file_big_npy2 = gr.Textbox(
         | 
| 1745 | 
            +
                                    #     label=i18n("特征文件路径"),
         | 
| 1746 | 
            +
                                    #     value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
         | 
| 1747 | 
            +
                                    #     interactive=True,
         | 
| 1748 | 
            +
                                    # )
         | 
| 1749 | 
            +
                                    index_rate2 = gr.Slider(
         | 
| 1750 | 
            +
                                        minimum=0,
         | 
| 1751 | 
            +
                                        maximum=1,
         | 
| 1752 | 
            +
                                        label=i18n("检索特征占比"),
         | 
| 1753 | 
            +
                                        value=1,
         | 
| 1754 | 
            +
                                        interactive=True,
         | 
| 1755 | 
            +
                                    )
         | 
| 1756 | 
            +
                                with gr.Column():
         | 
| 1757 | 
            +
                                    resample_sr1 = gr.Slider(
         | 
| 1758 | 
            +
                                        minimum=0,
         | 
| 1759 | 
            +
                                        maximum=48000,
         | 
| 1760 | 
            +
                                        label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
         | 
| 1761 | 
            +
                                        value=0,
         | 
| 1762 | 
            +
                                        step=1,
         | 
| 1763 | 
            +
                                        interactive=True,
         | 
| 1764 | 
            +
                                    )
         | 
| 1765 | 
            +
                                    rms_mix_rate1 = gr.Slider(
         | 
| 1766 | 
            +
                                        minimum=0,
         | 
| 1767 | 
            +
                                        maximum=1,
         | 
| 1768 | 
            +
                                        label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
         | 
| 1769 | 
            +
                                        value=1,
         | 
| 1770 | 
            +
                                        interactive=True,
         | 
| 1771 | 
            +
                                    )
         | 
| 1772 | 
            +
                                    protect1 = gr.Slider(
         | 
| 1773 | 
            +
                                        minimum=0,
         | 
| 1774 | 
            +
                                        maximum=0.5,
         | 
| 1775 | 
            +
                                        label=i18n(
         | 
| 1776 | 
            +
                                            "保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
         | 
| 1777 | 
            +
                                        ),
         | 
| 1778 | 
            +
                                        value=0.33,
         | 
| 1779 | 
            +
                                        step=0.01,
         | 
| 1780 | 
            +
                                        interactive=True,
         | 
| 1781 | 
            +
                                    )
         | 
| 1782 | 
            +
                                with gr.Column():
         | 
| 1783 | 
            +
                                    dir_input = gr.Textbox(
         | 
| 1784 | 
            +
                                        label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
         | 
| 1785 | 
            +
                                        value="E:\codes\py39\\test-20230416b\\todo-songs",
         | 
| 1786 | 
            +
                                    )
         | 
| 1787 | 
            +
                                    inputs = gr.File(
         | 
| 1788 | 
            +
                                        file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
         | 
| 1789 | 
            +
                                    )
         | 
| 1790 | 
            +
                                with gr.Row():
         | 
| 1791 | 
            +
                                    format1 = gr.Radio(
         | 
| 1792 | 
            +
                                        label=i18n("导出文件格式"),
         | 
| 1793 | 
            +
                                        choices=["wav", "flac", "mp3", "m4a"],
         | 
| 1794 | 
            +
                                        value="flac",
         | 
| 1795 | 
            +
                                        interactive=True,
         | 
| 1796 | 
            +
                                    )
         | 
| 1797 | 
            +
                                    but1 = gr.Button(i18n("转换"), variant="primary")
         | 
| 1798 | 
            +
                                    vc_output3 = gr.Textbox(label=i18n("输出信息"))
         | 
| 1799 | 
            +
                                but1.click(
         | 
| 1800 | 
            +
                                    vc_multi,
         | 
| 1801 | 
            +
                                    [
         | 
| 1802 | 
            +
                                        spk_item,
         | 
| 1803 | 
            +
                                        dir_input,
         | 
| 1804 | 
            +
                                        opt_input,
         | 
| 1805 | 
            +
                                        inputs,
         | 
| 1806 | 
            +
                                        vc_transform1,
         | 
| 1807 | 
            +
                                        f0method1,
         | 
| 1808 | 
            +
                                        file_index3,
         | 
| 1809 | 
            +
                                        file_index4,
         | 
| 1810 | 
            +
                                        # file_big_npy2,
         | 
| 1811 | 
            +
                                        index_rate2,
         | 
| 1812 | 
            +
                                        filter_radius1,
         | 
| 1813 | 
            +
                                        resample_sr1,
         | 
| 1814 | 
            +
                                        rms_mix_rate1,
         | 
| 1815 | 
            +
                                        protect1,
         | 
| 1816 | 
            +
                                        format1,
         | 
| 1817 | 
            +
                                        crepe_hop_length,
         | 
| 1818 | 
            +
                                    ],
         | 
| 1819 | 
            +
                                    [vc_output3],
         | 
| 1820 | 
            +
                                )
         | 
| 1821 | 
            +
                                but1.click(fn=lambda: easy_uploader.clear())
         | 
| 1822 | 
            +
                    with gr.TabItem("Download Model"):
         | 
| 1823 | 
            +
                        with gr.Row():
         | 
| 1824 | 
            +
                            url=gr.Textbox(label="Enter the URL to the Model:")
         | 
| 1825 | 
            +
                        with gr.Row():
         | 
| 1826 | 
            +
                            model = gr.Textbox(label="Name your model:")
         | 
| 1827 | 
            +
                            download_button=gr.Button("Download")
         | 
| 1828 | 
            +
                        with gr.Row():
         | 
| 1829 | 
            +
                            status_bar=gr.Textbox(label="")
         | 
| 1830 | 
            +
                            download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
         | 
| 1831 | 
            +
                        with gr.Row():
         | 
| 1832 | 
            +
                            gr.Markdown(
         | 
| 1833 | 
            +
                            """
         | 
| 1834 | 
            +
                            Made with ❤️ by [Alice Oliveira](https://github.com/aliceoq) | Hosted with ❤️ by [Mateus Elias](https://github.com/mateuseap)
         | 
| 1835 | 
            +
                            """
         | 
| 1836 | 
            +
                            )
         | 
| 1837 | 
            +
             | 
| 1838 | 
            +
                    def has_two_files_in_pretrained_folder():
         | 
| 1839 | 
            +
                        pretrained_folder = "./pretrained/"
         | 
| 1840 | 
            +
                        if not os.path.exists(pretrained_folder):
         | 
| 1841 | 
            +
                            return False
         | 
| 1842 | 
            +
             | 
| 1843 | 
            +
                        files_in_folder = os.listdir(pretrained_folder)
         | 
| 1844 | 
            +
                        num_files = len(files_in_folder)
         | 
| 1845 | 
            +
                        return num_files >= 2
         | 
| 1846 | 
            +
             | 
| 1847 | 
            +
                    if has_two_files_in_pretrained_folder():    
         | 
| 1848 | 
            +
                        print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")       
         | 
| 1849 | 
            +
                        with gr.TabItem("Train", visible=False):
         | 
| 1850 | 
            +
                            with gr.Row():
         | 
| 1851 | 
            +
                                with gr.Column():
         | 
| 1852 | 
            +
                                    exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
         | 
| 1853 | 
            +
                                    sr2 = gr.Radio(
         | 
| 1854 | 
            +
                                        label=i18n("目标采样率"),
         | 
| 1855 | 
            +
                                        choices=["40k", "48k"],
         | 
| 1856 | 
            +
                                        value="40k",
         | 
| 1857 | 
            +
                                        interactive=True,
         | 
| 1858 | 
            +
                                        visible=False
         | 
| 1859 | 
            +
                                    )
         | 
| 1860 | 
            +
                                    if_f0_3 = gr.Radio(
         | 
| 1861 | 
            +
                                        label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
         | 
| 1862 | 
            +
                                        choices=[True, False],
         | 
| 1863 | 
            +
                                        value=True,
         | 
| 1864 | 
            +
                                        interactive=True,
         | 
| 1865 | 
            +
                                        visible=False
         | 
| 1866 | 
            +
                                    )
         | 
| 1867 | 
            +
                                    version19 = gr.Radio(
         | 
| 1868 | 
            +
                                        label="RVC version",
         | 
| 1869 | 
            +
                                        choices=["v1", "v2"],
         | 
| 1870 | 
            +
                                        value="v2",
         | 
| 1871 | 
            +
                                        interactive=True,
         | 
| 1872 | 
            +
                                        visible=False,
         | 
| 1873 | 
            +
                                    )
         | 
| 1874 | 
            +
                                    np7 = gr.Slider(
         | 
| 1875 | 
            +
                                        minimum=0,
         | 
| 1876 | 
            +
                                        maximum=config.n_cpu,
         | 
| 1877 | 
            +
                                        step=1,
         | 
| 1878 | 
            +
                                        label="# of CPUs for data processing (Leave as it is)",
         | 
| 1879 | 
            +
                                        value=config.n_cpu,
         | 
| 1880 | 
            +
                                        interactive=True,
         | 
| 1881 | 
            +
                                        visible=True
         | 
| 1882 | 
            +
                                    )
         | 
| 1883 | 
            +
                                    trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
         | 
| 1884 | 
            +
                                    easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
         | 
| 1885 | 
            +
                                    but1 = gr.Button("1. Process The Dataset", variant="primary")
         | 
| 1886 | 
            +
                                    info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
         | 
| 1887 | 
            +
                                    easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
         | 
| 1888 | 
            +
                                    but1.click(
         | 
| 1889 | 
            +
                                        preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
         | 
| 1890 | 
            +
                                    )
         | 
| 1891 | 
            +
                                with gr.Column():
         | 
| 1892 | 
            +
                                    spk_id5 = gr.Slider(
         | 
| 1893 | 
            +
                                        minimum=0,
         | 
| 1894 | 
            +
                                        maximum=4,
         | 
| 1895 | 
            +
                                        step=1,
         | 
| 1896 | 
            +
                                        label=i18n("请指定说话人id"),
         | 
| 1897 | 
            +
                                        value=0,
         | 
| 1898 | 
            +
                                        interactive=True,
         | 
| 1899 | 
            +
                                        visible=False
         | 
| 1900 | 
            +
                                    )
         | 
| 1901 | 
            +
                                    with gr.Accordion('GPU Settings', open=False, visible=False):
         | 
| 1902 | 
            +
                                        gpus6 = gr.Textbox(
         | 
| 1903 | 
            +
                                            label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"),
         | 
| 1904 | 
            +
                                            value=gpus,
         | 
| 1905 | 
            +
                                            interactive=True,
         | 
| 1906 | 
            +
                                            visible=False
         | 
| 1907 | 
            +
                                        )
         | 
| 1908 | 
            +
                                        gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
         | 
| 1909 | 
            +
                                    f0method8 = gr.Radio(
         | 
| 1910 | 
            +
                                        label=i18n(
         | 
| 1911 | 
            +
                                            "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
         | 
| 1912 | 
            +
                                        ),
         | 
| 1913 | 
            +
                                        choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
         | 
| 1914 | 
            +
                                        value="rmvpe",
         | 
| 1915 | 
            +
                                        interactive=True,
         | 
| 1916 | 
            +
                                    )
         | 
| 1917 | 
            +
                                    
         | 
| 1918 | 
            +
                                    extraction_crepe_hop_length = gr.Slider(
         | 
| 1919 | 
            +
                                        minimum=1,
         | 
| 1920 | 
            +
                                        maximum=512,
         | 
| 1921 | 
            +
                                        step=1,
         | 
| 1922 | 
            +
                                        label=i18n("crepe_hop_length"),
         | 
| 1923 | 
            +
                                        value=128,
         | 
| 1924 | 
            +
                                        interactive=True,
         | 
| 1925 | 
            +
                                        visible=False,
         | 
| 1926 | 
            +
                                    )
         | 
| 1927 | 
            +
                                    f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
         | 
| 1928 | 
            +
                                    but2 = gr.Button("2. Pitch Extraction", variant="primary")
         | 
| 1929 | 
            +
                                    info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
         | 
| 1930 | 
            +
                                    but2.click(
         | 
| 1931 | 
            +
                                            extract_f0_feature,
         | 
| 1932 | 
            +
                                            [gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
         | 
| 1933 | 
            +
                                            [info2],
         | 
| 1934 | 
            +
                                        )
         | 
| 1935 | 
            +
                                with gr.Row():      
         | 
| 1936 | 
            +
                                    with gr.Column():
         | 
| 1937 | 
            +
                                        total_epoch11 = gr.Slider(
         | 
| 1938 | 
            +
                                            minimum=1,
         | 
| 1939 | 
            +
                                            maximum=5000,
         | 
| 1940 | 
            +
                                            step=10,
         | 
| 1941 | 
            +
                                            label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
         | 
| 1942 | 
            +
                                            value=250,
         | 
| 1943 | 
            +
                                            interactive=True,
         | 
| 1944 | 
            +
                                        )
         | 
| 1945 | 
            +
                                        butstop = gr.Button(
         | 
| 1946 | 
            +
                                            "Stop Training",
         | 
| 1947 | 
            +
                                            variant='primary',
         | 
| 1948 | 
            +
                                            visible=False,
         | 
| 1949 | 
            +
                                        )
         | 
| 1950 | 
            +
                                        but3 = gr.Button("3. Train Model", variant="primary", visible=True)
         | 
| 1951 | 
            +
                                        
         | 
| 1952 | 
            +
                                        but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
         | 
| 1953 | 
            +
                                        butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
         | 
| 1954 | 
            +
                                        
         | 
| 1955 | 
            +
                                        
         | 
| 1956 | 
            +
                                        but4 = gr.Button("4.Train Index", variant="primary")
         | 
| 1957 | 
            +
                                        info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
         | 
| 1958 | 
            +
                                        with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
         | 
| 1959 | 
            +
                                            #gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
         | 
| 1960 | 
            +
                                            with gr.Column():
         | 
| 1961 | 
            +
                                                save_epoch10 = gr.Slider(
         | 
| 1962 | 
            +
                                                    minimum=1,
         | 
| 1963 | 
            +
                                                    maximum=200,
         | 
| 1964 | 
            +
                                                    step=1,
         | 
| 1965 | 
            +
                                                    label="Backup every X amount of epochs:",
         | 
| 1966 | 
            +
                                                    value=10,
         | 
| 1967 | 
            +
                                                    interactive=True,
         | 
| 1968 | 
            +
                                                )
         | 
| 1969 | 
            +
                                                batch_size12 = gr.Slider(
         | 
| 1970 | 
            +
                                                    minimum=1,
         | 
| 1971 | 
            +
                                                    maximum=40,
         | 
| 1972 | 
            +
                                                    step=1,
         | 
| 1973 | 
            +
                                                    label="Batch Size (LEAVE IT unless you know what you're doing!):",
         | 
| 1974 | 
            +
                                                    value=default_batch_size,
         | 
| 1975 | 
            +
                                                    interactive=True,
         | 
| 1976 | 
            +
                                                )
         | 
| 1977 | 
            +
                                                if_save_latest13 = gr.Checkbox(
         | 
| 1978 | 
            +
                                                    label="Save only the latest '.ckpt' file to save disk space.",
         | 
| 1979 | 
            +
                                                    value=True,
         | 
| 1980 | 
            +
                                                    interactive=True,
         | 
| 1981 | 
            +
                                                )
         | 
| 1982 | 
            +
                                                if_cache_gpu17 = gr.Checkbox(
         | 
| 1983 | 
            +
                                                    label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
         | 
| 1984 | 
            +
                                                    value=False,
         | 
| 1985 | 
            +
                                                    interactive=True,
         | 
| 1986 | 
            +
                                                )
         | 
| 1987 | 
            +
                                                if_save_every_weights18 = gr.Checkbox(
         | 
| 1988 | 
            +
                                                    label="Save a small final model to the 'weights' folder at each save point.",
         | 
| 1989 | 
            +
                                                    value=True,
         | 
| 1990 | 
            +
                                                    interactive=True,
         | 
| 1991 | 
            +
                                                )
         | 
| 1992 | 
            +
                                        zip_model = gr.Button('5. Download Model')
         | 
| 1993 | 
            +
                                        zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
         | 
| 1994 | 
            +
                                        zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
         | 
| 1995 | 
            +
                            with gr.Group():
         | 
| 1996 | 
            +
                                with gr.Accordion("Base Model Locations:", open=False, visible=False):
         | 
| 1997 | 
            +
                                    pretrained_G14 = gr.Textbox(
         | 
| 1998 | 
            +
                                        label=i18n("加载预训练底模G路径"),
         | 
| 1999 | 
            +
                                        value="pretrained_v2/f0G40k.pth",
         | 
| 2000 | 
            +
                                        interactive=True,
         | 
| 2001 | 
            +
                                    )
         | 
| 2002 | 
            +
                                    pretrained_D15 = gr.Textbox(
         | 
| 2003 | 
            +
                                        label=i18n("加载预训练底模D路径"),
         | 
| 2004 | 
            +
                                        value="pretrained_v2/f0D40k.pth",
         | 
| 2005 | 
            +
                                        interactive=True,
         | 
| 2006 | 
            +
                                    )
         | 
| 2007 | 
            +
                                    gpus16 = gr.Textbox(
         | 
| 2008 | 
            +
                                        label=i18n("以-分隔输入使用的卡号, 例如   0-1-2   使用卡0和卡1和卡2"),
         | 
| 2009 | 
            +
                                        value=gpus,
         | 
| 2010 | 
            +
                                        interactive=True,
         | 
| 2011 | 
            +
                                    )
         | 
| 2012 | 
            +
                                sr2.change(
         | 
| 2013 | 
            +
                                    change_sr2,
         | 
| 2014 | 
            +
                                    [sr2, if_f0_3, version19],
         | 
| 2015 | 
            +
                                    [pretrained_G14, pretrained_D15, version19],
         | 
| 2016 | 
            +
                                )
         | 
| 2017 | 
            +
                                version19.change(
         | 
| 2018 | 
            +
                                    change_version19,
         | 
| 2019 | 
            +
                                    [sr2, if_f0_3, version19],
         | 
| 2020 | 
            +
                                    [pretrained_G14, pretrained_D15],
         | 
| 2021 | 
            +
                                )
         | 
| 2022 | 
            +
                                if_f0_3.change(
         | 
| 2023 | 
            +
                                    change_f0,
         | 
| 2024 | 
            +
                                    [if_f0_3, sr2, version19],
         | 
| 2025 | 
            +
                                    [f0method8, pretrained_G14, pretrained_D15],
         | 
| 2026 | 
            +
                                )
         | 
| 2027 | 
            +
                                but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
         | 
| 2028 | 
            +
                                but3.click(
         | 
| 2029 | 
            +
                                    click_train,
         | 
| 2030 | 
            +
                                    [
         | 
| 2031 | 
            +
                                        exp_dir1,
         | 
| 2032 | 
            +
                                        sr2,
         | 
| 2033 | 
            +
                                        if_f0_3,
         | 
| 2034 | 
            +
                                        spk_id5,
         | 
| 2035 | 
            +
                                        save_epoch10,
         | 
| 2036 | 
            +
                                        total_epoch11,
         | 
| 2037 | 
            +
                                        batch_size12,
         | 
| 2038 | 
            +
                                        if_save_latest13,
         | 
| 2039 | 
            +
                                        pretrained_G14,
         | 
| 2040 | 
            +
                                        pretrained_D15,
         | 
| 2041 | 
            +
                                        gpus16,
         | 
| 2042 | 
            +
                                        if_cache_gpu17,
         | 
| 2043 | 
            +
                                        if_save_every_weights18,
         | 
| 2044 | 
            +
                                        version19,
         | 
| 2045 | 
            +
                                    ],
         | 
| 2046 | 
            +
                                    [
         | 
| 2047 | 
            +
                                        info3,
         | 
| 2048 | 
            +
                                        butstop,
         | 
| 2049 | 
            +
                                        but3,
         | 
| 2050 | 
            +
                                    ],
         | 
| 2051 | 
            +
                                )
         | 
| 2052 | 
            +
                                but4.click(train_index, [exp_dir1, version19], info3)
         | 
| 2053 | 
            +
                                but5.click(
         | 
| 2054 | 
            +
                                    train1key,
         | 
| 2055 | 
            +
                                    [
         | 
| 2056 | 
            +
                                        exp_dir1,
         | 
| 2057 | 
            +
                                        sr2,
         | 
| 2058 | 
            +
                                        if_f0_3,
         | 
| 2059 | 
            +
                                        trainset_dir4,
         | 
| 2060 | 
            +
                                        spk_id5,
         | 
| 2061 | 
            +
                                        np7,
         | 
| 2062 | 
            +
                                        f0method8,
         | 
| 2063 | 
            +
                                        save_epoch10,
         | 
| 2064 | 
            +
                                        total_epoch11,
         | 
| 2065 | 
            +
                                        batch_size12,
         | 
| 2066 | 
            +
                                        if_save_latest13,
         | 
| 2067 | 
            +
                                        pretrained_G14,
         | 
| 2068 | 
            +
                                        pretrained_D15,
         | 
| 2069 | 
            +
                                        gpus16,
         | 
| 2070 | 
            +
                                        if_cache_gpu17,
         | 
| 2071 | 
            +
                                        if_save_every_weights18,
         | 
| 2072 | 
            +
                                        version19,
         | 
| 2073 | 
            +
                                        extraction_crepe_hop_length
         | 
| 2074 | 
            +
                                    ],
         | 
| 2075 | 
            +
                                    info3,
         | 
| 2076 | 
            +
                                )
         | 
| 2077 | 
            +
             | 
| 2078 | 
            +
                    else:
         | 
| 2079 | 
            +
                        print(
         | 
| 2080 | 
            +
                            "Pretrained weights not downloaded. Disabling training tab.\n"
         | 
| 2081 | 
            +
                            "Wondering how to train a voice? Visit here for the RVC model training guide: https://t.ly/RVC_Training_Guide\n"
         | 
| 2082 | 
            +
                            "-------------------------------\n"
         | 
| 2083 | 
            +
                        )
         | 
| 2084 | 
            +
                            
         | 
| 2085 | 
            +
                app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
         | 
| 2086 | 
            +
            #endregion
         | 
    	
        config.py
    ADDED
    
    | @@ -0,0 +1,204 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import argparse
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import json
         | 
| 5 | 
            +
            from multiprocessing import cpu_count
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            global usefp16
         | 
| 8 | 
            +
            usefp16 = False
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            def use_fp32_config():
         | 
| 12 | 
            +
                usefp16 = False
         | 
| 13 | 
            +
                device_capability = 0
         | 
| 14 | 
            +
                if torch.cuda.is_available():
         | 
| 15 | 
            +
                    device = torch.device("cuda:0")  # Assuming you have only one GPU (index 0).
         | 
| 16 | 
            +
                    device_capability = torch.cuda.get_device_capability(device)[0]
         | 
| 17 | 
            +
                    if device_capability >= 7:
         | 
| 18 | 
            +
                        usefp16 = True
         | 
| 19 | 
            +
                        for config_file in ["32k.json", "40k.json", "48k.json"]:
         | 
| 20 | 
            +
                            with open(f"configs/{config_file}", "r") as d:
         | 
| 21 | 
            +
                                data = json.load(d)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                            if "train" in data and "fp16_run" in data["train"]:
         | 
| 24 | 
            +
                                data["train"]["fp16_run"] = True
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                            with open(f"configs/{config_file}", "w") as d:
         | 
| 27 | 
            +
                                json.dump(data, d, indent=4)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                            print(f"Set fp16_run to true in {config_file}")
         | 
| 30 | 
            +
             | 
| 31 | 
            +
                        with open(
         | 
| 32 | 
            +
                            "trainset_preprocess_pipeline_print.py", "r", encoding="utf-8"
         | 
| 33 | 
            +
                        ) as f:
         | 
| 34 | 
            +
                            strr = f.read()
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                        strr = strr.replace("3.0", "3.7")
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                        with open(
         | 
| 39 | 
            +
                            "trainset_preprocess_pipeline_print.py", "w", encoding="utf-8"
         | 
| 40 | 
            +
                        ) as f:
         | 
| 41 | 
            +
                            f.write(strr)
         | 
| 42 | 
            +
                    else:
         | 
| 43 | 
            +
                        for config_file in ["32k.json", "40k.json", "48k.json"]:
         | 
| 44 | 
            +
                            with open(f"configs/{config_file}", "r") as f:
         | 
| 45 | 
            +
                                data = json.load(f)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                            if "train" in data and "fp16_run" in data["train"]:
         | 
| 48 | 
            +
                                data["train"]["fp16_run"] = False
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                            with open(f"configs/{config_file}", "w") as d:
         | 
| 51 | 
            +
                                json.dump(data, d, indent=4)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                            print(f"Set fp16_run to false in {config_file}")
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                        with open(
         | 
| 56 | 
            +
                            "trainset_preprocess_pipeline_print.py", "r", encoding="utf-8"
         | 
| 57 | 
            +
                        ) as f:
         | 
| 58 | 
            +
                            strr = f.read()
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                        strr = strr.replace("3.7", "3.0")
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                        with open(
         | 
| 63 | 
            +
                            "trainset_preprocess_pipeline_print.py", "w", encoding="utf-8"
         | 
| 64 | 
            +
                        ) as f:
         | 
| 65 | 
            +
                            f.write(strr)
         | 
| 66 | 
            +
                else:
         | 
| 67 | 
            +
                    print(
         | 
| 68 | 
            +
                        "CUDA is not available. Make sure you have an NVIDIA GPU and CUDA installed."
         | 
| 69 | 
            +
                    )
         | 
| 70 | 
            +
                return (usefp16, device_capability)
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            class Config:
         | 
| 74 | 
            +
                def __init__(self):
         | 
| 75 | 
            +
                    self.device = "cuda:0"
         | 
| 76 | 
            +
                    self.is_half = True
         | 
| 77 | 
            +
                    self.n_cpu = 0
         | 
| 78 | 
            +
                    self.gpu_name = None
         | 
| 79 | 
            +
                    self.gpu_mem = None
         | 
| 80 | 
            +
                    (
         | 
| 81 | 
            +
                        self.python_cmd,
         | 
| 82 | 
            +
                        self.listen_port,
         | 
| 83 | 
            +
                        self.iscolab,
         | 
| 84 | 
            +
                        self.noparallel,
         | 
| 85 | 
            +
                        self.noautoopen,
         | 
| 86 | 
            +
                        self.paperspace,
         | 
| 87 | 
            +
                        self.is_cli,
         | 
| 88 | 
            +
                    ) = self.arg_parse()
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                @staticmethod
         | 
| 93 | 
            +
                def arg_parse() -> tuple:
         | 
| 94 | 
            +
                    exe = sys.executable or "python"
         | 
| 95 | 
            +
                    parser = argparse.ArgumentParser()
         | 
| 96 | 
            +
                    parser.add_argument("--port", type=int, default=7865, help="Listen port")
         | 
| 97 | 
            +
                    parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
         | 
| 98 | 
            +
                    parser.add_argument("--colab", action="store_true", help="Launch in colab")
         | 
| 99 | 
            +
                    parser.add_argument(
         | 
| 100 | 
            +
                        "--noparallel", action="store_true", help="Disable parallel processing"
         | 
| 101 | 
            +
                    )
         | 
| 102 | 
            +
                    parser.add_argument(
         | 
| 103 | 
            +
                        "--noautoopen",
         | 
| 104 | 
            +
                        action="store_true",
         | 
| 105 | 
            +
                        help="Do not open in browser automatically",
         | 
| 106 | 
            +
                    )
         | 
| 107 | 
            +
                    parser.add_argument(  # Fork Feature. Paperspace integration for web UI
         | 
| 108 | 
            +
                        "--paperspace",
         | 
| 109 | 
            +
                        action="store_true",
         | 
| 110 | 
            +
                        help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.",
         | 
| 111 | 
            +
                    )
         | 
| 112 | 
            +
                    parser.add_argument(  # Fork Feature. Embed a CLI into the infer-web.py
         | 
| 113 | 
            +
                        "--is_cli",
         | 
| 114 | 
            +
                        action="store_true",
         | 
| 115 | 
            +
                        help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!",
         | 
| 116 | 
            +
                    )
         | 
| 117 | 
            +
                    cmd_opts = parser.parse_args()
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    return (
         | 
| 122 | 
            +
                        cmd_opts.pycmd,
         | 
| 123 | 
            +
                        cmd_opts.port,
         | 
| 124 | 
            +
                        cmd_opts.colab,
         | 
| 125 | 
            +
                        cmd_opts.noparallel,
         | 
| 126 | 
            +
                        cmd_opts.noautoopen,
         | 
| 127 | 
            +
                        cmd_opts.paperspace,
         | 
| 128 | 
            +
                        cmd_opts.is_cli,
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                # has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
         | 
| 132 | 
            +
                # check `getattr` and try it for compatibility
         | 
| 133 | 
            +
                @staticmethod
         | 
| 134 | 
            +
                def has_mps() -> bool:
         | 
| 135 | 
            +
                    if not torch.backends.mps.is_available():
         | 
| 136 | 
            +
                        return False
         | 
| 137 | 
            +
                    try:
         | 
| 138 | 
            +
                        torch.zeros(1).to(torch.device("mps"))
         | 
| 139 | 
            +
                        return True
         | 
| 140 | 
            +
                    except Exception:
         | 
| 141 | 
            +
                        return False
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                def device_config(self) -> tuple:
         | 
| 144 | 
            +
                    if torch.cuda.is_available():
         | 
| 145 | 
            +
                        i_device = int(self.device.split(":")[-1])
         | 
| 146 | 
            +
                        self.gpu_name = torch.cuda.get_device_name(i_device)
         | 
| 147 | 
            +
                        if (
         | 
| 148 | 
            +
                            ("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
         | 
| 149 | 
            +
                            or "P40" in self.gpu_name.upper()
         | 
| 150 | 
            +
                            or "1060" in self.gpu_name
         | 
| 151 | 
            +
                            or "1070" in self.gpu_name
         | 
| 152 | 
            +
                            or "1080" in self.gpu_name
         | 
| 153 | 
            +
                        ):
         | 
| 154 | 
            +
                            print("Found GPU", self.gpu_name, ", force to fp32")
         | 
| 155 | 
            +
                            self.is_half = False
         | 
| 156 | 
            +
                        else:
         | 
| 157 | 
            +
                            print("Found GPU", self.gpu_name)
         | 
| 158 | 
            +
                            use_fp32_config()
         | 
| 159 | 
            +
                        self.gpu_mem = int(
         | 
| 160 | 
            +
                            torch.cuda.get_device_properties(i_device).total_memory
         | 
| 161 | 
            +
                            / 1024
         | 
| 162 | 
            +
                            / 1024
         | 
| 163 | 
            +
                            / 1024
         | 
| 164 | 
            +
                            + 0.4
         | 
| 165 | 
            +
                        )
         | 
| 166 | 
            +
                        if self.gpu_mem <= 4:
         | 
| 167 | 
            +
                            with open("trainset_preprocess_pipeline_print.py", "r") as f:
         | 
| 168 | 
            +
                                strr = f.read().replace("3.7", "3.0")
         | 
| 169 | 
            +
                            with open("trainset_preprocess_pipeline_print.py", "w") as f:
         | 
| 170 | 
            +
                                f.write(strr)
         | 
| 171 | 
            +
                    elif self.has_mps():
         | 
| 172 | 
            +
                        print("No supported Nvidia GPU found, use MPS instead")
         | 
| 173 | 
            +
                        self.device = "mps"
         | 
| 174 | 
            +
                        self.is_half = False
         | 
| 175 | 
            +
                        use_fp32_config()
         | 
| 176 | 
            +
                    else:
         | 
| 177 | 
            +
                        print("No supported Nvidia GPU found, use CPU instead")
         | 
| 178 | 
            +
                        self.device = "cpu"
         | 
| 179 | 
            +
                        self.is_half = False
         | 
| 180 | 
            +
                        use_fp32_config()
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    if self.n_cpu == 0:
         | 
| 183 | 
            +
                        self.n_cpu = cpu_count()
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if self.is_half:
         | 
| 186 | 
            +
                        # 6G显存配置
         | 
| 187 | 
            +
                        x_pad = 3
         | 
| 188 | 
            +
                        x_query = 10
         | 
| 189 | 
            +
                        x_center = 60
         | 
| 190 | 
            +
                        x_max = 65
         | 
| 191 | 
            +
                    else:
         | 
| 192 | 
            +
                        # 5G显存配置
         | 
| 193 | 
            +
                        x_pad = 1
         | 
| 194 | 
            +
                        x_query = 6
         | 
| 195 | 
            +
                        x_center = 38
         | 
| 196 | 
            +
                        x_max = 41
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    if self.gpu_mem != None and self.gpu_mem <= 4:
         | 
| 199 | 
            +
                        x_pad = 1
         | 
| 200 | 
            +
                        x_query = 5
         | 
| 201 | 
            +
                        x_center = 30
         | 
| 202 | 
            +
                        x_max = 32
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    return x_pad, x_query, x_center, x_max
         | 
    	
        gitattributes.txt
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        gitignore.txt
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            __pycache__/
         | 
| 2 | 
            +
            weights/
         | 
| 3 | 
            +
            TEMP/
         | 
| 4 | 
            +
            logs/
         | 
| 5 | 
            +
            csvdb/
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Environment
         | 
| 8 | 
            +
            venv/
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            # Models
         | 
| 11 | 
            +
            hubert_base.pt
         | 
| 12 | 
            +
            rmvpe.pt
         | 
    	
        i18n.py
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import locale
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            def load_language_list(language):
         | 
| 7 | 
            +
                with open(f"./i18n/{language}.json", "r", encoding="utf-8") as f:
         | 
| 8 | 
            +
                    language_list = json.load(f)
         | 
| 9 | 
            +
                return language_list
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class I18nAuto:
         | 
| 13 | 
            +
                def __init__(self, language=None):
         | 
| 14 | 
            +
                    if language in ["Auto", None]:
         | 
| 15 | 
            +
                        language = locale.getdefaultlocale()[
         | 
| 16 | 
            +
                            0
         | 
| 17 | 
            +
                        ]  # getlocale can't identify the system's language ((None, None))
         | 
| 18 | 
            +
                    if not os.path.exists(f"./i18n/{language}.json"):
         | 
| 19 | 
            +
                        language = "en_US"
         | 
| 20 | 
            +
                    self.language = language
         | 
| 21 | 
            +
                    # print("Use Language:", language)
         | 
| 22 | 
            +
                    self.language_map = load_language_list(language)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                def __call__(self, key):
         | 
| 25 | 
            +
                    return self.language_map.get(key, key)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def print(self):
         | 
| 28 | 
            +
                    print("Use Language:", self.language)
         | 
    	
        packages.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            build-essential
         | 
| 2 | 
            +
            ffmpeg
         | 
| 3 | 
            +
            aria2
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            gTTS
         | 
| 2 | 
            +
            elevenlabs
         | 
| 3 | 
            +
            stftpitchshift==1.5.1
         | 
| 4 | 
            +
            torchcrepe
         | 
| 5 | 
            +
            setuptools
         | 
| 6 | 
            +
            wheel
         | 
| 7 | 
            +
            httpx==0.23.0
         | 
| 8 | 
            +
            faiss-gpu
         | 
| 9 | 
            +
            fairseq
         | 
| 10 | 
            +
            gradio==3.34.0
         | 
| 11 | 
            +
            ffmpeg-python
         | 
| 12 | 
            +
            praat-parselmouth
         | 
| 13 | 
            +
            pyworld
         | 
| 14 | 
            +
            numpy==1.23.5
         | 
| 15 | 
            +
            i18n
         | 
| 16 | 
            +
            numba==0.56.4
         | 
| 17 | 
            +
            librosa==0.9.2
         | 
| 18 | 
            +
            mega.py
         | 
| 19 | 
            +
            gdown
         | 
| 20 | 
            +
            onnxruntime
         | 
| 21 | 
            +
            pyngrok==4.1.12
         | 
| 22 | 
            +
            torch
         | 
    	
        rmvpe.py
    ADDED
    
    | @@ -0,0 +1,432 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import sys, torch, numpy as np, traceback, pdb
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            from time import time as ttime
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class BiGRU(nn.Module):
         | 
| 8 | 
            +
                def __init__(self, input_features, hidden_features, num_layers):
         | 
| 9 | 
            +
                    super(BiGRU, self).__init__()
         | 
| 10 | 
            +
                    self.gru = nn.GRU(
         | 
| 11 | 
            +
                        input_features,
         | 
| 12 | 
            +
                        hidden_features,
         | 
| 13 | 
            +
                        num_layers=num_layers,
         | 
| 14 | 
            +
                        batch_first=True,
         | 
| 15 | 
            +
                        bidirectional=True,
         | 
| 16 | 
            +
                    )
         | 
| 17 | 
            +
             | 
| 18 | 
            +
                def forward(self, x):
         | 
| 19 | 
            +
                    return self.gru(x)[0]
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            class ConvBlockRes(nn.Module):
         | 
| 23 | 
            +
                def __init__(self, in_channels, out_channels, momentum=0.01):
         | 
| 24 | 
            +
                    super(ConvBlockRes, self).__init__()
         | 
| 25 | 
            +
                    self.conv = nn.Sequential(
         | 
| 26 | 
            +
                        nn.Conv2d(
         | 
| 27 | 
            +
                            in_channels=in_channels,
         | 
| 28 | 
            +
                            out_channels=out_channels,
         | 
| 29 | 
            +
                            kernel_size=(3, 3),
         | 
| 30 | 
            +
                            stride=(1, 1),
         | 
| 31 | 
            +
                            padding=(1, 1),
         | 
| 32 | 
            +
                            bias=False,
         | 
| 33 | 
            +
                        ),
         | 
| 34 | 
            +
                        nn.BatchNorm2d(out_channels, momentum=momentum),
         | 
| 35 | 
            +
                        nn.ReLU(),
         | 
| 36 | 
            +
                        nn.Conv2d(
         | 
| 37 | 
            +
                            in_channels=out_channels,
         | 
| 38 | 
            +
                            out_channels=out_channels,
         | 
| 39 | 
            +
                            kernel_size=(3, 3),
         | 
| 40 | 
            +
                            stride=(1, 1),
         | 
| 41 | 
            +
                            padding=(1, 1),
         | 
| 42 | 
            +
                            bias=False,
         | 
| 43 | 
            +
                        ),
         | 
| 44 | 
            +
                        nn.BatchNorm2d(out_channels, momentum=momentum),
         | 
| 45 | 
            +
                        nn.ReLU(),
         | 
| 46 | 
            +
                    )
         | 
| 47 | 
            +
                    if in_channels != out_channels:
         | 
| 48 | 
            +
                        self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
         | 
| 49 | 
            +
                        self.is_shortcut = True
         | 
| 50 | 
            +
                    else:
         | 
| 51 | 
            +
                        self.is_shortcut = False
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def forward(self, x):
         | 
| 54 | 
            +
                    if self.is_shortcut:
         | 
| 55 | 
            +
                        return self.conv(x) + self.shortcut(x)
         | 
| 56 | 
            +
                    else:
         | 
| 57 | 
            +
                        return self.conv(x) + x
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            class Encoder(nn.Module):
         | 
| 61 | 
            +
                def __init__(
         | 
| 62 | 
            +
                    self,
         | 
| 63 | 
            +
                    in_channels,
         | 
| 64 | 
            +
                    in_size,
         | 
| 65 | 
            +
                    n_encoders,
         | 
| 66 | 
            +
                    kernel_size,
         | 
| 67 | 
            +
                    n_blocks,
         | 
| 68 | 
            +
                    out_channels=16,
         | 
| 69 | 
            +
                    momentum=0.01,
         | 
| 70 | 
            +
                ):
         | 
| 71 | 
            +
                    super(Encoder, self).__init__()
         | 
| 72 | 
            +
                    self.n_encoders = n_encoders
         | 
| 73 | 
            +
                    self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
         | 
| 74 | 
            +
                    self.layers = nn.ModuleList()
         | 
| 75 | 
            +
                    self.latent_channels = []
         | 
| 76 | 
            +
                    for i in range(self.n_encoders):
         | 
| 77 | 
            +
                        self.layers.append(
         | 
| 78 | 
            +
                            ResEncoderBlock(
         | 
| 79 | 
            +
                                in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
         | 
| 80 | 
            +
                            )
         | 
| 81 | 
            +
                        )
         | 
| 82 | 
            +
                        self.latent_channels.append([out_channels, in_size])
         | 
| 83 | 
            +
                        in_channels = out_channels
         | 
| 84 | 
            +
                        out_channels *= 2
         | 
| 85 | 
            +
                        in_size //= 2
         | 
| 86 | 
            +
                    self.out_size = in_size
         | 
| 87 | 
            +
                    self.out_channel = out_channels
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def forward(self, x):
         | 
| 90 | 
            +
                    concat_tensors = []
         | 
| 91 | 
            +
                    x = self.bn(x)
         | 
| 92 | 
            +
                    for i in range(self.n_encoders):
         | 
| 93 | 
            +
                        _, x = self.layers[i](x)
         | 
| 94 | 
            +
                        concat_tensors.append(_)
         | 
| 95 | 
            +
                    return x, concat_tensors
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            class ResEncoderBlock(nn.Module):
         | 
| 99 | 
            +
                def __init__(
         | 
| 100 | 
            +
                    self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
         | 
| 101 | 
            +
                ):
         | 
| 102 | 
            +
                    super(ResEncoderBlock, self).__init__()
         | 
| 103 | 
            +
                    self.n_blocks = n_blocks
         | 
| 104 | 
            +
                    self.conv = nn.ModuleList()
         | 
| 105 | 
            +
                    self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
         | 
| 106 | 
            +
                    for i in range(n_blocks - 1):
         | 
| 107 | 
            +
                        self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
         | 
| 108 | 
            +
                    self.kernel_size = kernel_size
         | 
| 109 | 
            +
                    if self.kernel_size is not None:
         | 
| 110 | 
            +
                        self.pool = nn.AvgPool2d(kernel_size=kernel_size)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                def forward(self, x):
         | 
| 113 | 
            +
                    for i in range(self.n_blocks):
         | 
| 114 | 
            +
                        x = self.conv[i](x)
         | 
| 115 | 
            +
                    if self.kernel_size is not None:
         | 
| 116 | 
            +
                        return x, self.pool(x)
         | 
| 117 | 
            +
                    else:
         | 
| 118 | 
            +
                        return x
         | 
| 119 | 
            +
             | 
| 120 | 
            +
             | 
| 121 | 
            +
            class Intermediate(nn.Module):  #
         | 
| 122 | 
            +
                def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
         | 
| 123 | 
            +
                    super(Intermediate, self).__init__()
         | 
| 124 | 
            +
                    self.n_inters = n_inters
         | 
| 125 | 
            +
                    self.layers = nn.ModuleList()
         | 
| 126 | 
            +
                    self.layers.append(
         | 
| 127 | 
            +
                        ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
                    for i in range(self.n_inters - 1):
         | 
| 130 | 
            +
                        self.layers.append(
         | 
| 131 | 
            +
                            ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
         | 
| 132 | 
            +
                        )
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def forward(self, x):
         | 
| 135 | 
            +
                    for i in range(self.n_inters):
         | 
| 136 | 
            +
                        x = self.layers[i](x)
         | 
| 137 | 
            +
                    return x
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class ResDecoderBlock(nn.Module):
         | 
| 141 | 
            +
                def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
         | 
| 142 | 
            +
                    super(ResDecoderBlock, self).__init__()
         | 
| 143 | 
            +
                    out_padding = (0, 1) if stride == (1, 2) else (1, 1)
         | 
| 144 | 
            +
                    self.n_blocks = n_blocks
         | 
| 145 | 
            +
                    self.conv1 = nn.Sequential(
         | 
| 146 | 
            +
                        nn.ConvTranspose2d(
         | 
| 147 | 
            +
                            in_channels=in_channels,
         | 
| 148 | 
            +
                            out_channels=out_channels,
         | 
| 149 | 
            +
                            kernel_size=(3, 3),
         | 
| 150 | 
            +
                            stride=stride,
         | 
| 151 | 
            +
                            padding=(1, 1),
         | 
| 152 | 
            +
                            output_padding=out_padding,
         | 
| 153 | 
            +
                            bias=False,
         | 
| 154 | 
            +
                        ),
         | 
| 155 | 
            +
                        nn.BatchNorm2d(out_channels, momentum=momentum),
         | 
| 156 | 
            +
                        nn.ReLU(),
         | 
| 157 | 
            +
                    )
         | 
| 158 | 
            +
                    self.conv2 = nn.ModuleList()
         | 
| 159 | 
            +
                    self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
         | 
| 160 | 
            +
                    for i in range(n_blocks - 1):
         | 
| 161 | 
            +
                        self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def forward(self, x, concat_tensor):
         | 
| 164 | 
            +
                    x = self.conv1(x)
         | 
| 165 | 
            +
                    x = torch.cat((x, concat_tensor), dim=1)
         | 
| 166 | 
            +
                    for i in range(self.n_blocks):
         | 
| 167 | 
            +
                        x = self.conv2[i](x)
         | 
| 168 | 
            +
                    return x
         | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
            class Decoder(nn.Module):
         | 
| 172 | 
            +
                def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
         | 
| 173 | 
            +
                    super(Decoder, self).__init__()
         | 
| 174 | 
            +
                    self.layers = nn.ModuleList()
         | 
| 175 | 
            +
                    self.n_decoders = n_decoders
         | 
| 176 | 
            +
                    for i in range(self.n_decoders):
         | 
| 177 | 
            +
                        out_channels = in_channels // 2
         | 
| 178 | 
            +
                        self.layers.append(
         | 
| 179 | 
            +
                            ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
         | 
| 180 | 
            +
                        )
         | 
| 181 | 
            +
                        in_channels = out_channels
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                def forward(self, x, concat_tensors):
         | 
| 184 | 
            +
                    for i in range(self.n_decoders):
         | 
| 185 | 
            +
                        x = self.layers[i](x, concat_tensors[-1 - i])
         | 
| 186 | 
            +
                    return x
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            class DeepUnet(nn.Module):
         | 
| 190 | 
            +
                def __init__(
         | 
| 191 | 
            +
                    self,
         | 
| 192 | 
            +
                    kernel_size,
         | 
| 193 | 
            +
                    n_blocks,
         | 
| 194 | 
            +
                    en_de_layers=5,
         | 
| 195 | 
            +
                    inter_layers=4,
         | 
| 196 | 
            +
                    in_channels=1,
         | 
| 197 | 
            +
                    en_out_channels=16,
         | 
| 198 | 
            +
                ):
         | 
| 199 | 
            +
                    super(DeepUnet, self).__init__()
         | 
| 200 | 
            +
                    self.encoder = Encoder(
         | 
| 201 | 
            +
                        in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
         | 
| 202 | 
            +
                    )
         | 
| 203 | 
            +
                    self.intermediate = Intermediate(
         | 
| 204 | 
            +
                        self.encoder.out_channel // 2,
         | 
| 205 | 
            +
                        self.encoder.out_channel,
         | 
| 206 | 
            +
                        inter_layers,
         | 
| 207 | 
            +
                        n_blocks,
         | 
| 208 | 
            +
                    )
         | 
| 209 | 
            +
                    self.decoder = Decoder(
         | 
| 210 | 
            +
                        self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                def forward(self, x):
         | 
| 214 | 
            +
                    x, concat_tensors = self.encoder(x)
         | 
| 215 | 
            +
                    x = self.intermediate(x)
         | 
| 216 | 
            +
                    x = self.decoder(x, concat_tensors)
         | 
| 217 | 
            +
                    return x
         | 
| 218 | 
            +
             | 
| 219 | 
            +
             | 
| 220 | 
            +
            class E2E(nn.Module):
         | 
| 221 | 
            +
                def __init__(
         | 
| 222 | 
            +
                    self,
         | 
| 223 | 
            +
                    n_blocks,
         | 
| 224 | 
            +
                    n_gru,
         | 
| 225 | 
            +
                    kernel_size,
         | 
| 226 | 
            +
                    en_de_layers=5,
         | 
| 227 | 
            +
                    inter_layers=4,
         | 
| 228 | 
            +
                    in_channels=1,
         | 
| 229 | 
            +
                    en_out_channels=16,
         | 
| 230 | 
            +
                ):
         | 
| 231 | 
            +
                    super(E2E, self).__init__()
         | 
| 232 | 
            +
                    self.unet = DeepUnet(
         | 
| 233 | 
            +
                        kernel_size,
         | 
| 234 | 
            +
                        n_blocks,
         | 
| 235 | 
            +
                        en_de_layers,
         | 
| 236 | 
            +
                        inter_layers,
         | 
| 237 | 
            +
                        in_channels,
         | 
| 238 | 
            +
                        en_out_channels,
         | 
| 239 | 
            +
                    )
         | 
| 240 | 
            +
                    self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
         | 
| 241 | 
            +
                    if n_gru:
         | 
| 242 | 
            +
                        self.fc = nn.Sequential(
         | 
| 243 | 
            +
                            BiGRU(3 * 128, 256, n_gru),
         | 
| 244 | 
            +
                            nn.Linear(512, 360),
         | 
| 245 | 
            +
                            nn.Dropout(0.25),
         | 
| 246 | 
            +
                            nn.Sigmoid(),
         | 
| 247 | 
            +
                        )
         | 
| 248 | 
            +
                    else:
         | 
| 249 | 
            +
                        self.fc = nn.Sequential(
         | 
| 250 | 
            +
                            nn.Linear(3 * N_MELS, N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
         | 
| 251 | 
            +
                        )
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def forward(self, mel):
         | 
| 254 | 
            +
                    mel = mel.transpose(-1, -2).unsqueeze(1)
         | 
| 255 | 
            +
                    x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
         | 
| 256 | 
            +
                    x = self.fc(x)
         | 
| 257 | 
            +
                    return x
         | 
| 258 | 
            +
             | 
| 259 | 
            +
             | 
| 260 | 
            +
            from librosa.filters import mel
         | 
| 261 | 
            +
             | 
| 262 | 
            +
             | 
| 263 | 
            +
            class MelSpectrogram(torch.nn.Module):
         | 
| 264 | 
            +
                def __init__(
         | 
| 265 | 
            +
                    self,
         | 
| 266 | 
            +
                    is_half,
         | 
| 267 | 
            +
                    n_mel_channels,
         | 
| 268 | 
            +
                    sampling_rate,
         | 
| 269 | 
            +
                    win_length,
         | 
| 270 | 
            +
                    hop_length,
         | 
| 271 | 
            +
                    n_fft=None,
         | 
| 272 | 
            +
                    mel_fmin=0,
         | 
| 273 | 
            +
                    mel_fmax=None,
         | 
| 274 | 
            +
                    clamp=1e-5,
         | 
| 275 | 
            +
                ):
         | 
| 276 | 
            +
                    super().__init__()
         | 
| 277 | 
            +
                    n_fft = win_length if n_fft is None else n_fft
         | 
| 278 | 
            +
                    self.hann_window = {}
         | 
| 279 | 
            +
                    mel_basis = mel(
         | 
| 280 | 
            +
                        sr=sampling_rate,
         | 
| 281 | 
            +
                        n_fft=n_fft,
         | 
| 282 | 
            +
                        n_mels=n_mel_channels,
         | 
| 283 | 
            +
                        fmin=mel_fmin,
         | 
| 284 | 
            +
                        fmax=mel_fmax,
         | 
| 285 | 
            +
                        htk=True,
         | 
| 286 | 
            +
                    )
         | 
| 287 | 
            +
                    mel_basis = torch.from_numpy(mel_basis).float()
         | 
| 288 | 
            +
                    self.register_buffer("mel_basis", mel_basis)
         | 
| 289 | 
            +
                    self.n_fft = win_length if n_fft is None else n_fft
         | 
| 290 | 
            +
                    self.hop_length = hop_length
         | 
| 291 | 
            +
                    self.win_length = win_length
         | 
| 292 | 
            +
                    self.sampling_rate = sampling_rate
         | 
| 293 | 
            +
                    self.n_mel_channels = n_mel_channels
         | 
| 294 | 
            +
                    self.clamp = clamp
         | 
| 295 | 
            +
                    self.is_half = is_half
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def forward(self, audio, keyshift=0, speed=1, center=True):
         | 
| 298 | 
            +
                    factor = 2 ** (keyshift / 12)
         | 
| 299 | 
            +
                    n_fft_new = int(np.round(self.n_fft * factor))
         | 
| 300 | 
            +
                    win_length_new = int(np.round(self.win_length * factor))
         | 
| 301 | 
            +
                    hop_length_new = int(np.round(self.hop_length * speed))
         | 
| 302 | 
            +
                    keyshift_key = str(keyshift) + "_" + str(audio.device)
         | 
| 303 | 
            +
                    if keyshift_key not in self.hann_window:
         | 
| 304 | 
            +
                        self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
         | 
| 305 | 
            +
                            audio.device
         | 
| 306 | 
            +
                        )
         | 
| 307 | 
            +
                    fft = torch.stft(
         | 
| 308 | 
            +
                        audio,
         | 
| 309 | 
            +
                        n_fft=n_fft_new,
         | 
| 310 | 
            +
                        hop_length=hop_length_new,
         | 
| 311 | 
            +
                        win_length=win_length_new,
         | 
| 312 | 
            +
                        window=self.hann_window[keyshift_key],
         | 
| 313 | 
            +
                        center=center,
         | 
| 314 | 
            +
                        return_complex=True,
         | 
| 315 | 
            +
                    )
         | 
| 316 | 
            +
                    magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
         | 
| 317 | 
            +
                    if keyshift != 0:
         | 
| 318 | 
            +
                        size = self.n_fft // 2 + 1
         | 
| 319 | 
            +
                        resize = magnitude.size(1)
         | 
| 320 | 
            +
                        if resize < size:
         | 
| 321 | 
            +
                            magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
         | 
| 322 | 
            +
                        magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
         | 
| 323 | 
            +
                    mel_output = torch.matmul(self.mel_basis, magnitude)
         | 
| 324 | 
            +
                    if self.is_half == True:
         | 
| 325 | 
            +
                        mel_output = mel_output.half()
         | 
| 326 | 
            +
                    log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
         | 
| 327 | 
            +
                    return log_mel_spec
         | 
| 328 | 
            +
             | 
| 329 | 
            +
             | 
| 330 | 
            +
            class RMVPE:
         | 
| 331 | 
            +
                def __init__(self, model_path, is_half, device=None):
         | 
| 332 | 
            +
                    self.resample_kernel = {}
         | 
| 333 | 
            +
                    model = E2E(4, 1, (2, 2))
         | 
| 334 | 
            +
                    ckpt = torch.load(model_path, map_location="cpu")
         | 
| 335 | 
            +
                    model.load_state_dict(ckpt)
         | 
| 336 | 
            +
                    model.eval()
         | 
| 337 | 
            +
                    if is_half == True:
         | 
| 338 | 
            +
                        model = model.half()
         | 
| 339 | 
            +
                    self.model = model
         | 
| 340 | 
            +
                    self.resample_kernel = {}
         | 
| 341 | 
            +
                    self.is_half = is_half
         | 
| 342 | 
            +
                    if device is None:
         | 
| 343 | 
            +
                        device = "cuda" if torch.cuda.is_available() else "cpu"
         | 
| 344 | 
            +
                    self.device = device
         | 
| 345 | 
            +
                    self.mel_extractor = MelSpectrogram(
         | 
| 346 | 
            +
                        is_half, 128, 16000, 1024, 160, None, 30, 8000
         | 
| 347 | 
            +
                    ).to(device)
         | 
| 348 | 
            +
                    self.model = self.model.to(device)
         | 
| 349 | 
            +
                    cents_mapping = 20 * np.arange(360) + 1997.3794084376191
         | 
| 350 | 
            +
                    self.cents_mapping = np.pad(cents_mapping, (4, 4))  # 368
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                def mel2hidden(self, mel):
         | 
| 353 | 
            +
                    with torch.no_grad():
         | 
| 354 | 
            +
                        n_frames = mel.shape[-1]
         | 
| 355 | 
            +
                        mel = F.pad(
         | 
| 356 | 
            +
                            mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect"
         | 
| 357 | 
            +
                        )
         | 
| 358 | 
            +
                        hidden = self.model(mel)
         | 
| 359 | 
            +
                        return hidden[:, :n_frames]
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                def decode(self, hidden, thred=0.03):
         | 
| 362 | 
            +
                    cents_pred = self.to_local_average_cents(hidden, thred=thred)
         | 
| 363 | 
            +
                    f0 = 10 * (2 ** (cents_pred / 1200))
         | 
| 364 | 
            +
                    f0[f0 == 10] = 0
         | 
| 365 | 
            +
                    # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
         | 
| 366 | 
            +
                    return f0
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                def infer_from_audio(self, audio, thred=0.03):
         | 
| 369 | 
            +
                    audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
         | 
| 370 | 
            +
                    # torch.cuda.synchronize()
         | 
| 371 | 
            +
                    # t0=ttime()
         | 
| 372 | 
            +
                    mel = self.mel_extractor(audio, center=True)
         | 
| 373 | 
            +
                    # torch.cuda.synchronize()
         | 
| 374 | 
            +
                    # t1=ttime()
         | 
| 375 | 
            +
                    hidden = self.mel2hidden(mel)
         | 
| 376 | 
            +
                    # torch.cuda.synchronize()
         | 
| 377 | 
            +
                    # t2=ttime()
         | 
| 378 | 
            +
                    hidden = hidden.squeeze(0).cpu().numpy()
         | 
| 379 | 
            +
                    if self.is_half == True:
         | 
| 380 | 
            +
                        hidden = hidden.astype("float32")
         | 
| 381 | 
            +
                    f0 = self.decode(hidden, thred=thred)
         | 
| 382 | 
            +
                    # torch.cuda.synchronize()
         | 
| 383 | 
            +
                    # t3=ttime()
         | 
| 384 | 
            +
                    # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
         | 
| 385 | 
            +
                    return f0
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                def to_local_average_cents(self, salience, thred=0.05):
         | 
| 388 | 
            +
                    # t0 = ttime()
         | 
| 389 | 
            +
                    center = np.argmax(salience, axis=1)  # 帧长#index
         | 
| 390 | 
            +
                    salience = np.pad(salience, ((0, 0), (4, 4)))  # 帧长,368
         | 
| 391 | 
            +
                    # t1 = ttime()
         | 
| 392 | 
            +
                    center += 4
         | 
| 393 | 
            +
                    todo_salience = []
         | 
| 394 | 
            +
                    todo_cents_mapping = []
         | 
| 395 | 
            +
                    starts = center - 4
         | 
| 396 | 
            +
                    ends = center + 5
         | 
| 397 | 
            +
                    for idx in range(salience.shape[0]):
         | 
| 398 | 
            +
                        todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
         | 
| 399 | 
            +
                        todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
         | 
| 400 | 
            +
                    # t2 = ttime()
         | 
| 401 | 
            +
                    todo_salience = np.array(todo_salience)  # 帧长,9
         | 
| 402 | 
            +
                    todo_cents_mapping = np.array(todo_cents_mapping)  # 帧长,9
         | 
| 403 | 
            +
                    product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
         | 
| 404 | 
            +
                    weight_sum = np.sum(todo_salience, 1)  # 帧长
         | 
| 405 | 
            +
                    devided = product_sum / weight_sum  # 帧长
         | 
| 406 | 
            +
                    # t3 = ttime()
         | 
| 407 | 
            +
                    maxx = np.max(salience, axis=1)  # 帧长
         | 
| 408 | 
            +
                    devided[maxx <= thred] = 0
         | 
| 409 | 
            +
                    # t4 = ttime()
         | 
| 410 | 
            +
                    # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
         | 
| 411 | 
            +
                    return devided
         | 
| 412 | 
            +
             | 
| 413 | 
            +
             | 
| 414 | 
            +
            # if __name__ == '__main__':
         | 
| 415 | 
            +
            #     audio, sampling_rate = sf.read("卢本伟语录~1.wav")
         | 
| 416 | 
            +
            #     if len(audio.shape) > 1:
         | 
| 417 | 
            +
            #         audio = librosa.to_mono(audio.transpose(1, 0))
         | 
| 418 | 
            +
            #     audio_bak = audio.copy()
         | 
| 419 | 
            +
            #     if sampling_rate != 16000:
         | 
| 420 | 
            +
            #         audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
         | 
| 421 | 
            +
            #     model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/test-RMVPE/weights/rmvpe_llc_half.pt"
         | 
| 422 | 
            +
            #     thred = 0.03  # 0.01
         | 
| 423 | 
            +
            #     device = 'cuda' if torch.cuda.is_available() else 'cpu'
         | 
| 424 | 
            +
            #     rmvpe = RMVPE(model_path,is_half=False, device=device)
         | 
| 425 | 
            +
            #     t0=ttime()
         | 
| 426 | 
            +
            #     f0 = rmvpe.infer_from_audio(audio, thred=thred)
         | 
| 427 | 
            +
            #     f0 = rmvpe.infer_from_audio(audio, thred=thred)
         | 
| 428 | 
            +
            #     f0 = rmvpe.infer_from_audio(audio, thred=thred)
         | 
| 429 | 
            +
            #     f0 = rmvpe.infer_from_audio(audio, thred=thred)
         | 
| 430 | 
            +
            #     f0 = rmvpe.infer_from_audio(audio, thred=thred)
         | 
| 431 | 
            +
            #     t1=ttime()
         | 
| 432 | 
            +
            #     print(f0.shape,t1-t0)
         | 
    	
        run.sh
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Install Debian packages
         | 
| 2 | 
            +
            sudo apt-get update
         | 
| 3 | 
            +
            sudo apt-get install -qq -y build-essential ffmpeg aria2
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            # Upgrade pip and setuptools
         | 
| 6 | 
            +
            pip install --upgrade pip
         | 
| 7 | 
            +
            pip install --upgrade setuptools
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Install wheel package (built-package format for Python)
         | 
| 10 | 
            +
            pip install wheel
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Install Python packages using pip
         | 
| 13 | 
            +
            pip install -r requirements.txt
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # Run application locally at http://127.0.0.1:7860
         | 
| 16 | 
            +
            python app.py
         | 
    	
        utils.py
    ADDED
    
    | @@ -0,0 +1,151 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import ffmpeg
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # import praatio
         | 
| 5 | 
            +
            # import praatio.praat_scripts
         | 
| 6 | 
            +
            import os
         | 
| 7 | 
            +
            import sys
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import random
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import csv
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            platform_stft_mapping = {
         | 
| 14 | 
            +
                "linux": "stftpitchshift",
         | 
| 15 | 
            +
                "darwin": "stftpitchshift",
         | 
| 16 | 
            +
                "win32": "stftpitchshift.exe",
         | 
| 17 | 
            +
            }
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            stft = platform_stft_mapping.get(sys.platform)
         | 
| 20 | 
            +
            # praatEXE = join('.',os.path.abspath(os.getcwd()) + r"\Praat.exe")
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            def CSVutil(file, rw, type, *args):
         | 
| 24 | 
            +
                if type == "formanting":
         | 
| 25 | 
            +
                    if rw == "r":
         | 
| 26 | 
            +
                        with open(file) as fileCSVread:
         | 
| 27 | 
            +
                            csv_reader = list(csv.reader(fileCSVread))
         | 
| 28 | 
            +
                            return (
         | 
| 29 | 
            +
                                (csv_reader[0][0], csv_reader[0][1], csv_reader[0][2])
         | 
| 30 | 
            +
                                if csv_reader is not None
         | 
| 31 | 
            +
                                else (lambda: exec('raise ValueError("No data")'))()
         | 
| 32 | 
            +
                            )
         | 
| 33 | 
            +
                    else:
         | 
| 34 | 
            +
                        if args:
         | 
| 35 | 
            +
                            doformnt = args[0]
         | 
| 36 | 
            +
                        else:
         | 
| 37 | 
            +
                            doformnt = False
         | 
| 38 | 
            +
                        qfr = args[1] if len(args) > 1 else 1.0
         | 
| 39 | 
            +
                        tmb = args[2] if len(args) > 2 else 1.0
         | 
| 40 | 
            +
                        with open(file, rw, newline="") as fileCSVwrite:
         | 
| 41 | 
            +
                            csv_writer = csv.writer(fileCSVwrite, delimiter=",")
         | 
| 42 | 
            +
                            csv_writer.writerow([doformnt, qfr, tmb])
         | 
| 43 | 
            +
                elif type == "stop":
         | 
| 44 | 
            +
                    stop = args[0] if args else False
         | 
| 45 | 
            +
                    with open(file, rw, newline="") as fileCSVwrite:
         | 
| 46 | 
            +
                        csv_writer = csv.writer(fileCSVwrite, delimiter=",")
         | 
| 47 | 
            +
                        csv_writer.writerow([stop])
         | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            def load_audio(file, sr, DoFormant, Quefrency, Timbre):
         | 
| 51 | 
            +
                converted = False
         | 
| 52 | 
            +
                DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting")
         | 
| 53 | 
            +
                try:
         | 
| 54 | 
            +
                    # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
         | 
| 55 | 
            +
                    # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
         | 
| 56 | 
            +
                    # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
         | 
| 57 | 
            +
                    file = (
         | 
| 58 | 
            +
                        file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
         | 
| 59 | 
            +
                    )  # 防止小白拷路径头尾带了空格和"和回车
         | 
| 60 | 
            +
                    file_formanted = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    # print(f"dofor={bool(DoFormant)} timbr={Timbre} quef={Quefrency}\n")
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    if (
         | 
| 65 | 
            +
                        lambda DoFormant: True
         | 
| 66 | 
            +
                        if DoFormant.lower() == "true"
         | 
| 67 | 
            +
                        else (False if DoFormant.lower() == "false" else DoFormant)
         | 
| 68 | 
            +
                    )(DoFormant):
         | 
| 69 | 
            +
                        numerator = round(random.uniform(1, 4), 4)
         | 
| 70 | 
            +
                        # os.system(f"stftpitchshift -i {file} -q {Quefrency} -t {Timbre} -o {file_formanted}")
         | 
| 71 | 
            +
                        # print('stftpitchshift -i "%s" -p 1.0 --rms -w 128 -v 8 -q %s -t %s -o "%s"' % (file, Quefrency, Timbre, file_formanted))
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                        if not file.endswith(".wav"):
         | 
| 74 | 
            +
                            if not os.path.isfile(f"{file_formanted}.wav"):
         | 
| 75 | 
            +
                                converted = True
         | 
| 76 | 
            +
                                # print(f"\nfile = {file}\n")
         | 
| 77 | 
            +
                                # print(f"\nfile_formanted = {file_formanted}\n")
         | 
| 78 | 
            +
                                converting = (
         | 
| 79 | 
            +
                                    ffmpeg.input(file_formanted, threads=0)
         | 
| 80 | 
            +
                                    .output(f"{file_formanted}.wav")
         | 
| 81 | 
            +
                                    .run(
         | 
| 82 | 
            +
                                        cmd=["ffmpeg", "-nostdin"],
         | 
| 83 | 
            +
                                        capture_stdout=True,
         | 
| 84 | 
            +
                                        capture_stderr=True,
         | 
| 85 | 
            +
                                    )
         | 
| 86 | 
            +
                                )
         | 
| 87 | 
            +
                            else:
         | 
| 88 | 
            +
                                pass
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                        file_formanted = (
         | 
| 91 | 
            +
                            f"{file_formanted}.wav"
         | 
| 92 | 
            +
                            if not file_formanted.endswith(".wav")
         | 
| 93 | 
            +
                            else file_formanted
         | 
| 94 | 
            +
                        )
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                        print(f" · Formanting {file_formanted}...\n")
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                        os.system(
         | 
| 99 | 
            +
                            '%s -i "%s" -q "%s" -t "%s" -o "%sFORMANTED_%s.wav"'
         | 
| 100 | 
            +
                            % (
         | 
| 101 | 
            +
                                stft,
         | 
| 102 | 
            +
                                file_formanted,
         | 
| 103 | 
            +
                                Quefrency,
         | 
| 104 | 
            +
                                Timbre,
         | 
| 105 | 
            +
                                file_formanted,
         | 
| 106 | 
            +
                                str(numerator),
         | 
| 107 | 
            +
                            )
         | 
| 108 | 
            +
                        )
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                        print(f" · Formanted {file_formanted}!\n")
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                        # filepraat = (os.path.abspath(os.getcwd()) + '\\' + file).replace('/','\\')
         | 
| 113 | 
            +
                        # file_formantedpraat = ('"' + os.path.abspath(os.getcwd()) + '/' + 'formanted'.join(file_formanted) + '"').replace('/','\\')
         | 
| 114 | 
            +
                        # print("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                        out, _ = (
         | 
| 117 | 
            +
                            ffmpeg.input(
         | 
| 118 | 
            +
                                "%sFORMANTED_%s.wav" % (file_formanted, str(numerator)), threads=0
         | 
| 119 | 
            +
                            )
         | 
| 120 | 
            +
                            .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
         | 
| 121 | 
            +
                            .run(
         | 
| 122 | 
            +
                                cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
         | 
| 123 | 
            +
                            )
         | 
| 124 | 
            +
                        )
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                        try:
         | 
| 127 | 
            +
                            os.remove("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
         | 
| 128 | 
            +
                        except Exception:
         | 
| 129 | 
            +
                            pass
         | 
| 130 | 
            +
                            print("couldn't remove formanted type of file")
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    else:
         | 
| 133 | 
            +
                        out, _ = (
         | 
| 134 | 
            +
                            ffmpeg.input(file, threads=0)
         | 
| 135 | 
            +
                            .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
         | 
| 136 | 
            +
                            .run(
         | 
| 137 | 
            +
                                cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
         | 
| 138 | 
            +
                            )
         | 
| 139 | 
            +
                        )
         | 
| 140 | 
            +
                except Exception as e:
         | 
| 141 | 
            +
                    raise RuntimeError(f"Failed to load audio: {e}")
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                if converted:
         | 
| 144 | 
            +
                    try:
         | 
| 145 | 
            +
                        os.remove(file_formanted)
         | 
| 146 | 
            +
                    except Exception:
         | 
| 147 | 
            +
                        pass
         | 
| 148 | 
            +
                        print("couldn't remove converted type of file")
         | 
| 149 | 
            +
                    converted = False
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                return np.frombuffer(out, np.float32).flatten()
         | 
    	
        vc_infer_pipeline.py
    ADDED
    
    | @@ -0,0 +1,646 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np, parselmouth, torch, pdb, sys, os
         | 
| 2 | 
            +
            from time import time as ttime
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            import torchcrepe  # Fork feature. Use the crepe f0 algorithm. New dependency (pip install torchcrepe)
         | 
| 5 | 
            +
            from torch import Tensor
         | 
| 6 | 
            +
            import scipy.signal as signal
         | 
| 7 | 
            +
            import pyworld, os, traceback, faiss, librosa, torchcrepe
         | 
| 8 | 
            +
            from scipy import signal
         | 
| 9 | 
            +
            from functools import lru_cache
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            now_dir = os.getcwd()
         | 
| 12 | 
            +
            sys.path.append(now_dir)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            input_audio_path2wav = {}
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            @lru_cache
         | 
| 20 | 
            +
            def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
         | 
| 21 | 
            +
                audio = input_audio_path2wav[input_audio_path]
         | 
| 22 | 
            +
                f0, t = pyworld.harvest(
         | 
| 23 | 
            +
                    audio,
         | 
| 24 | 
            +
                    fs=fs,
         | 
| 25 | 
            +
                    f0_ceil=f0max,
         | 
| 26 | 
            +
                    f0_floor=f0min,
         | 
| 27 | 
            +
                    frame_period=frame_period,
         | 
| 28 | 
            +
                )
         | 
| 29 | 
            +
                f0 = pyworld.stonemask(audio, f0, t, fs)
         | 
| 30 | 
            +
                return f0
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def change_rms(data1, sr1, data2, sr2, rate):  # 1是输入音频,2是输出音频,rate是2的占比
         | 
| 34 | 
            +
                # print(data1.max(),data2.max())
         | 
| 35 | 
            +
                rms1 = librosa.feature.rms(
         | 
| 36 | 
            +
                    y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
         | 
| 37 | 
            +
                )  # 每半秒一个点
         | 
| 38 | 
            +
                rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
         | 
| 39 | 
            +
                rms1 = torch.from_numpy(rms1)
         | 
| 40 | 
            +
                rms1 = F.interpolate(
         | 
| 41 | 
            +
                    rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
         | 
| 42 | 
            +
                ).squeeze()
         | 
| 43 | 
            +
                rms2 = torch.from_numpy(rms2)
         | 
| 44 | 
            +
                rms2 = F.interpolate(
         | 
| 45 | 
            +
                    rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
         | 
| 46 | 
            +
                ).squeeze()
         | 
| 47 | 
            +
                rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
         | 
| 48 | 
            +
                data2 *= (
         | 
| 49 | 
            +
                    torch.pow(rms1, torch.tensor(1 - rate))
         | 
| 50 | 
            +
                    * torch.pow(rms2, torch.tensor(rate - 1))
         | 
| 51 | 
            +
                ).numpy()
         | 
| 52 | 
            +
                return data2
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            class VC(object):
         | 
| 56 | 
            +
                def __init__(self, tgt_sr, config):
         | 
| 57 | 
            +
                    self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
         | 
| 58 | 
            +
                        config.x_pad,
         | 
| 59 | 
            +
                        config.x_query,
         | 
| 60 | 
            +
                        config.x_center,
         | 
| 61 | 
            +
                        config.x_max,
         | 
| 62 | 
            +
                        config.is_half,
         | 
| 63 | 
            +
                    )
         | 
| 64 | 
            +
                    self.sr = 16000  # hubert输入采样率
         | 
| 65 | 
            +
                    self.window = 160  # 每帧点数
         | 
| 66 | 
            +
                    self.t_pad = self.sr * self.x_pad  # 每条前后pad时间
         | 
| 67 | 
            +
                    self.t_pad_tgt = tgt_sr * self.x_pad
         | 
| 68 | 
            +
                    self.t_pad2 = self.t_pad * 2
         | 
| 69 | 
            +
                    self.t_query = self.sr * self.x_query  # 查询切点前后查询时间
         | 
| 70 | 
            +
                    self.t_center = self.sr * self.x_center  # 查询切点位置
         | 
| 71 | 
            +
                    self.t_max = self.sr * self.x_max  # 免查询时长阈值
         | 
| 72 | 
            +
                    self.device = config.device
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                # Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
         | 
| 75 | 
            +
                def get_optimal_torch_device(self, index: int = 0) -> torch.device:
         | 
| 76 | 
            +
                    # Get cuda device
         | 
| 77 | 
            +
                    if torch.cuda.is_available():
         | 
| 78 | 
            +
                        return torch.device(
         | 
| 79 | 
            +
                            f"cuda:{index % torch.cuda.device_count()}"
         | 
| 80 | 
            +
                        )  # Very fast
         | 
| 81 | 
            +
                    elif torch.backends.mps.is_available():
         | 
| 82 | 
            +
                        return torch.device("mps")
         | 
| 83 | 
            +
                    # Insert an else here to grab "xla" devices if available. TO DO later. Requires the torch_xla.core.xla_model library
         | 
| 84 | 
            +
                    # Else wise return the "cpu" as a torch device,
         | 
| 85 | 
            +
                    return torch.device("cpu")
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                # Fork Feature: Compute f0 with the crepe method
         | 
| 88 | 
            +
                def get_f0_crepe_computation(
         | 
| 89 | 
            +
                    self,
         | 
| 90 | 
            +
                    x,
         | 
| 91 | 
            +
                    f0_min,
         | 
| 92 | 
            +
                    f0_max,
         | 
| 93 | 
            +
                    p_len,
         | 
| 94 | 
            +
                    hop_length=160,  # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
         | 
| 95 | 
            +
                    model="full",  # Either use crepe-tiny "tiny" or crepe "full". Default is full
         | 
| 96 | 
            +
                ):
         | 
| 97 | 
            +
                    x = x.astype(
         | 
| 98 | 
            +
                        np.float32
         | 
| 99 | 
            +
                    )  # fixes the F.conv2D exception. We needed to convert double to float.
         | 
| 100 | 
            +
                    x /= np.quantile(np.abs(x), 0.999)
         | 
| 101 | 
            +
                    torch_device = self.get_optimal_torch_device()
         | 
| 102 | 
            +
                    audio = torch.from_numpy(x).to(torch_device, copy=True)
         | 
| 103 | 
            +
                    audio = torch.unsqueeze(audio, dim=0)
         | 
| 104 | 
            +
                    if audio.ndim == 2 and audio.shape[0] > 1:
         | 
| 105 | 
            +
                        audio = torch.mean(audio, dim=0, keepdim=True).detach()
         | 
| 106 | 
            +
                    audio = audio.detach()
         | 
| 107 | 
            +
                    print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
         | 
| 108 | 
            +
                    pitch: Tensor = torchcrepe.predict(
         | 
| 109 | 
            +
                        audio,
         | 
| 110 | 
            +
                        self.sr,
         | 
| 111 | 
            +
                        hop_length,
         | 
| 112 | 
            +
                        f0_min,
         | 
| 113 | 
            +
                        f0_max,
         | 
| 114 | 
            +
                        model,
         | 
| 115 | 
            +
                        batch_size=hop_length * 2,
         | 
| 116 | 
            +
                        device=torch_device,
         | 
| 117 | 
            +
                        pad=True,
         | 
| 118 | 
            +
                    )
         | 
| 119 | 
            +
                    p_len = p_len or x.shape[0] // hop_length
         | 
| 120 | 
            +
                    # Resize the pitch for final f0
         | 
| 121 | 
            +
                    source = np.array(pitch.squeeze(0).cpu().float().numpy())
         | 
| 122 | 
            +
                    source[source < 0.001] = np.nan
         | 
| 123 | 
            +
                    target = np.interp(
         | 
| 124 | 
            +
                        np.arange(0, len(source) * p_len, len(source)) / p_len,
         | 
| 125 | 
            +
                        np.arange(0, len(source)),
         | 
| 126 | 
            +
                        source,
         | 
| 127 | 
            +
                    )
         | 
| 128 | 
            +
                    f0 = np.nan_to_num(target)
         | 
| 129 | 
            +
                    return f0  # Resized f0
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def get_f0_official_crepe_computation(
         | 
| 132 | 
            +
                    self,
         | 
| 133 | 
            +
                    x,
         | 
| 134 | 
            +
                    f0_min,
         | 
| 135 | 
            +
                    f0_max,
         | 
| 136 | 
            +
                    model="full",
         | 
| 137 | 
            +
                ):
         | 
| 138 | 
            +
                    # Pick a batch size that doesn't cause memory errors on your gpu
         | 
| 139 | 
            +
                    batch_size = 512
         | 
| 140 | 
            +
                    # Compute pitch using first gpu
         | 
| 141 | 
            +
                    audio = torch.tensor(np.copy(x))[None].float()
         | 
| 142 | 
            +
                    f0, pd = torchcrepe.predict(
         | 
| 143 | 
            +
                        audio,
         | 
| 144 | 
            +
                        self.sr,
         | 
| 145 | 
            +
                        self.window,
         | 
| 146 | 
            +
                        f0_min,
         | 
| 147 | 
            +
                        f0_max,
         | 
| 148 | 
            +
                        model,
         | 
| 149 | 
            +
                        batch_size=batch_size,
         | 
| 150 | 
            +
                        device=self.device,
         | 
| 151 | 
            +
                        return_periodicity=True,
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
                    pd = torchcrepe.filter.median(pd, 3)
         | 
| 154 | 
            +
                    f0 = torchcrepe.filter.mean(f0, 3)
         | 
| 155 | 
            +
                    f0[pd < 0.1] = 0
         | 
| 156 | 
            +
                    f0 = f0[0].cpu().numpy()
         | 
| 157 | 
            +
                    return f0
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                # Fork Feature: Compute pYIN f0 method
         | 
| 160 | 
            +
                def get_f0_pyin_computation(self, x, f0_min, f0_max):
         | 
| 161 | 
            +
                    y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
         | 
| 162 | 
            +
                    f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
         | 
| 163 | 
            +
                    f0 = f0[1:]  # Get rid of extra first frame
         | 
| 164 | 
            +
                    return f0
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                # Fork Feature: Acquire median hybrid f0 estimation calculation
         | 
| 167 | 
            +
                def get_f0_hybrid_computation(
         | 
| 168 | 
            +
                    self,
         | 
| 169 | 
            +
                    methods_str,
         | 
| 170 | 
            +
                    input_audio_path,
         | 
| 171 | 
            +
                    x,
         | 
| 172 | 
            +
                    f0_min,
         | 
| 173 | 
            +
                    f0_max,
         | 
| 174 | 
            +
                    p_len,
         | 
| 175 | 
            +
                    filter_radius,
         | 
| 176 | 
            +
                    crepe_hop_length,
         | 
| 177 | 
            +
                    time_step,
         | 
| 178 | 
            +
                ):
         | 
| 179 | 
            +
                    # Get various f0 methods from input to use in the computation stack
         | 
| 180 | 
            +
                    s = methods_str
         | 
| 181 | 
            +
                    s = s.split("hybrid")[1]
         | 
| 182 | 
            +
                    s = s.replace("[", "").replace("]", "")
         | 
| 183 | 
            +
                    methods = s.split("+")
         | 
| 184 | 
            +
                    f0_computation_stack = []
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    print("Calculating f0 pitch estimations for methods: %s" % str(methods))
         | 
| 187 | 
            +
                    x = x.astype(np.float32)
         | 
| 188 | 
            +
                    x /= np.quantile(np.abs(x), 0.999)
         | 
| 189 | 
            +
                    # Get f0 calculations for all methods specified
         | 
| 190 | 
            +
                    for method in methods:
         | 
| 191 | 
            +
                        f0 = None
         | 
| 192 | 
            +
                        if method == "pm":
         | 
| 193 | 
            +
                            f0 = (
         | 
| 194 | 
            +
                                parselmouth.Sound(x, self.sr)
         | 
| 195 | 
            +
                                .to_pitch_ac(
         | 
| 196 | 
            +
                                    time_step=time_step / 1000,
         | 
| 197 | 
            +
                                    voicing_threshold=0.6,
         | 
| 198 | 
            +
                                    pitch_floor=f0_min,
         | 
| 199 | 
            +
                                    pitch_ceiling=f0_max,
         | 
| 200 | 
            +
                                )
         | 
| 201 | 
            +
                                .selected_array["frequency"]
         | 
| 202 | 
            +
                            )
         | 
| 203 | 
            +
                            pad_size = (p_len - len(f0) + 1) // 2
         | 
| 204 | 
            +
                            if pad_size > 0 or p_len - len(f0) - pad_size > 0:
         | 
| 205 | 
            +
                                f0 = np.pad(
         | 
| 206 | 
            +
                                    f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
         | 
| 207 | 
            +
                                )
         | 
| 208 | 
            +
                        elif method == "crepe":
         | 
| 209 | 
            +
                            f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
         | 
| 210 | 
            +
                            f0 = f0[1:]  # Get rid of extra first frame
         | 
| 211 | 
            +
                        elif method == "crepe-tiny":
         | 
| 212 | 
            +
                            f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
         | 
| 213 | 
            +
                            f0 = f0[1:]  # Get rid of extra first frame
         | 
| 214 | 
            +
                        elif method == "mangio-crepe":
         | 
| 215 | 
            +
                            f0 = self.get_f0_crepe_computation(
         | 
| 216 | 
            +
                                x, f0_min, f0_max, p_len, crepe_hop_length
         | 
| 217 | 
            +
                            )
         | 
| 218 | 
            +
                        elif method == "mangio-crepe-tiny":
         | 
| 219 | 
            +
                            f0 = self.get_f0_crepe_computation(
         | 
| 220 | 
            +
                                x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
         | 
| 221 | 
            +
                            )
         | 
| 222 | 
            +
                        elif method == "harvest":
         | 
| 223 | 
            +
                            f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
         | 
| 224 | 
            +
                            if filter_radius > 2:
         | 
| 225 | 
            +
                                f0 = signal.medfilt(f0, 3)
         | 
| 226 | 
            +
                            f0 = f0[1:]  # Get rid of first frame.
         | 
| 227 | 
            +
                        elif method == "dio":  # Potentially buggy?
         | 
| 228 | 
            +
                            f0, t = pyworld.dio(
         | 
| 229 | 
            +
                                x.astype(np.double),
         | 
| 230 | 
            +
                                fs=self.sr,
         | 
| 231 | 
            +
                                f0_ceil=f0_max,
         | 
| 232 | 
            +
                                f0_floor=f0_min,
         | 
| 233 | 
            +
                                frame_period=10,
         | 
| 234 | 
            +
                            )
         | 
| 235 | 
            +
                            f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
         | 
| 236 | 
            +
                            f0 = signal.medfilt(f0, 3)
         | 
| 237 | 
            +
                            f0 = f0[1:]
         | 
| 238 | 
            +
                        # elif method == "pyin": Not Working just yet
         | 
| 239 | 
            +
                        #    f0 = self.get_f0_pyin_computation(x, f0_min, f0_max)
         | 
| 240 | 
            +
                        # Push method to the stack
         | 
| 241 | 
            +
                        f0_computation_stack.append(f0)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    for fc in f0_computation_stack:
         | 
| 244 | 
            +
                        print(len(fc))
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
         | 
| 247 | 
            +
                    f0_median_hybrid = None
         | 
| 248 | 
            +
                    if len(f0_computation_stack) == 1:
         | 
| 249 | 
            +
                        f0_median_hybrid = f0_computation_stack[0]
         | 
| 250 | 
            +
                    else:
         | 
| 251 | 
            +
                        f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
         | 
| 252 | 
            +
                    return f0_median_hybrid
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def get_f0(
         | 
| 255 | 
            +
                    self,
         | 
| 256 | 
            +
                    input_audio_path,
         | 
| 257 | 
            +
                    x,
         | 
| 258 | 
            +
                    p_len,
         | 
| 259 | 
            +
                    f0_up_key,
         | 
| 260 | 
            +
                    f0_method,
         | 
| 261 | 
            +
                    filter_radius,
         | 
| 262 | 
            +
                    crepe_hop_length,
         | 
| 263 | 
            +
                    inp_f0=None,
         | 
| 264 | 
            +
                ):
         | 
| 265 | 
            +
                    global input_audio_path2wav
         | 
| 266 | 
            +
                    time_step = self.window / self.sr * 1000
         | 
| 267 | 
            +
                    f0_min = 50
         | 
| 268 | 
            +
                    f0_max = 1100
         | 
| 269 | 
            +
                    f0_mel_min = 1127 * np.log(1 + f0_min / 700)
         | 
| 270 | 
            +
                    f0_mel_max = 1127 * np.log(1 + f0_max / 700)
         | 
| 271 | 
            +
                    if f0_method == "pm":
         | 
| 272 | 
            +
                        f0 = (
         | 
| 273 | 
            +
                            parselmouth.Sound(x, self.sr)
         | 
| 274 | 
            +
                            .to_pitch_ac(
         | 
| 275 | 
            +
                                time_step=time_step / 1000,
         | 
| 276 | 
            +
                                voicing_threshold=0.6,
         | 
| 277 | 
            +
                                pitch_floor=f0_min,
         | 
| 278 | 
            +
                                pitch_ceiling=f0_max,
         | 
| 279 | 
            +
                            )
         | 
| 280 | 
            +
                            .selected_array["frequency"]
         | 
| 281 | 
            +
                        )
         | 
| 282 | 
            +
                        pad_size = (p_len - len(f0) + 1) // 2
         | 
| 283 | 
            +
                        if pad_size > 0 or p_len - len(f0) - pad_size > 0:
         | 
| 284 | 
            +
                            f0 = np.pad(
         | 
| 285 | 
            +
                                f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
         | 
| 286 | 
            +
                            )
         | 
| 287 | 
            +
                    elif f0_method == "harvest":
         | 
| 288 | 
            +
                        input_audio_path2wav[input_audio_path] = x.astype(np.double)
         | 
| 289 | 
            +
                        f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
         | 
| 290 | 
            +
                        if filter_radius > 2:
         | 
| 291 | 
            +
                            f0 = signal.medfilt(f0, 3)
         | 
| 292 | 
            +
                    elif f0_method == "dio":  # Potentially Buggy?
         | 
| 293 | 
            +
                        f0, t = pyworld.dio(
         | 
| 294 | 
            +
                            x.astype(np.double),
         | 
| 295 | 
            +
                            fs=self.sr,
         | 
| 296 | 
            +
                            f0_ceil=f0_max,
         | 
| 297 | 
            +
                            f0_floor=f0_min,
         | 
| 298 | 
            +
                            frame_period=10,
         | 
| 299 | 
            +
                        )
         | 
| 300 | 
            +
                        f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
         | 
| 301 | 
            +
                        f0 = signal.medfilt(f0, 3)
         | 
| 302 | 
            +
                    elif f0_method == "crepe":
         | 
| 303 | 
            +
                        f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
         | 
| 304 | 
            +
                    elif f0_method == "crepe-tiny":
         | 
| 305 | 
            +
                        f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, "tiny")
         | 
| 306 | 
            +
                    elif f0_method == "mangio-crepe":
         | 
| 307 | 
            +
                        f0 = self.get_f0_crepe_computation(
         | 
| 308 | 
            +
                            x, f0_min, f0_max, p_len, crepe_hop_length
         | 
| 309 | 
            +
                        )
         | 
| 310 | 
            +
                    elif f0_method == "mangio-crepe-tiny":
         | 
| 311 | 
            +
                        f0 = self.get_f0_crepe_computation(
         | 
| 312 | 
            +
                            x, f0_min, f0_max, p_len, crepe_hop_length, "tiny"
         | 
| 313 | 
            +
                        )
         | 
| 314 | 
            +
                    elif f0_method == "rmvpe":
         | 
| 315 | 
            +
                        if hasattr(self, "model_rmvpe") == False:
         | 
| 316 | 
            +
                            from rmvpe import RMVPE
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                            print("loading rmvpe model")
         | 
| 319 | 
            +
                            self.model_rmvpe = RMVPE(
         | 
| 320 | 
            +
                                "rmvpe.pt", is_half=self.is_half, device=self.device
         | 
| 321 | 
            +
                            )
         | 
| 322 | 
            +
                        f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    elif "hybrid" in f0_method:
         | 
| 325 | 
            +
                        # Perform hybrid median pitch estimation
         | 
| 326 | 
            +
                        input_audio_path2wav[input_audio_path] = x.astype(np.double)
         | 
| 327 | 
            +
                        f0 = self.get_f0_hybrid_computation(
         | 
| 328 | 
            +
                            f0_method,
         | 
| 329 | 
            +
                            input_audio_path,
         | 
| 330 | 
            +
                            x,
         | 
| 331 | 
            +
                            f0_min,
         | 
| 332 | 
            +
                            f0_max,
         | 
| 333 | 
            +
                            p_len,
         | 
| 334 | 
            +
                            filter_radius,
         | 
| 335 | 
            +
                            crepe_hop_length,
         | 
| 336 | 
            +
                            time_step,
         | 
| 337 | 
            +
                        )
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    f0 *= pow(2, f0_up_key / 12)
         | 
| 340 | 
            +
                    # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
         | 
| 341 | 
            +
                    tf0 = self.sr // self.window  # 每秒f0点数
         | 
| 342 | 
            +
                    if inp_f0 is not None:
         | 
| 343 | 
            +
                        delta_t = np.round(
         | 
| 344 | 
            +
                            (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
         | 
| 345 | 
            +
                        ).astype("int16")
         | 
| 346 | 
            +
                        replace_f0 = np.interp(
         | 
| 347 | 
            +
                            list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
         | 
| 348 | 
            +
                        )
         | 
| 349 | 
            +
                        shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
         | 
| 350 | 
            +
                        f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
         | 
| 351 | 
            +
                            :shape
         | 
| 352 | 
            +
                        ]
         | 
| 353 | 
            +
                    # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
         | 
| 354 | 
            +
                    f0bak = f0.copy()
         | 
| 355 | 
            +
                    f0_mel = 1127 * np.log(1 + f0 / 700)
         | 
| 356 | 
            +
                    f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
         | 
| 357 | 
            +
                        f0_mel_max - f0_mel_min
         | 
| 358 | 
            +
                    ) + 1
         | 
| 359 | 
            +
                    f0_mel[f0_mel <= 1] = 1
         | 
| 360 | 
            +
                    f0_mel[f0_mel > 255] = 255
         | 
| 361 | 
            +
                    f0_coarse = np.rint(f0_mel).astype(np.int)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    return f0_coarse, f0bak  # 1-0
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                def vc(
         | 
| 366 | 
            +
                    self,
         | 
| 367 | 
            +
                    model,
         | 
| 368 | 
            +
                    net_g,
         | 
| 369 | 
            +
                    sid,
         | 
| 370 | 
            +
                    audio0,
         | 
| 371 | 
            +
                    pitch,
         | 
| 372 | 
            +
                    pitchf,
         | 
| 373 | 
            +
                    times,
         | 
| 374 | 
            +
                    index,
         | 
| 375 | 
            +
                    big_npy,
         | 
| 376 | 
            +
                    index_rate,
         | 
| 377 | 
            +
                    version,
         | 
| 378 | 
            +
                    protect,
         | 
| 379 | 
            +
                ):  # ,file_index,file_big_npy
         | 
| 380 | 
            +
                    feats = torch.from_numpy(audio0)
         | 
| 381 | 
            +
                    if self.is_half:
         | 
| 382 | 
            +
                        feats = feats.half()
         | 
| 383 | 
            +
                    else:
         | 
| 384 | 
            +
                        feats = feats.float()
         | 
| 385 | 
            +
                    if feats.dim() == 2:  # double channels
         | 
| 386 | 
            +
                        feats = feats.mean(-1)
         | 
| 387 | 
            +
                    assert feats.dim() == 1, feats.dim()
         | 
| 388 | 
            +
                    feats = feats.view(1, -1)
         | 
| 389 | 
            +
                    padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    inputs = {
         | 
| 392 | 
            +
                        "source": feats.to(self.device),
         | 
| 393 | 
            +
                        "padding_mask": padding_mask,
         | 
| 394 | 
            +
                        "output_layer": 9 if version == "v1" else 12,
         | 
| 395 | 
            +
                    }
         | 
| 396 | 
            +
                    t0 = ttime()
         | 
| 397 | 
            +
                    with torch.no_grad():
         | 
| 398 | 
            +
                        logits = model.extract_features(**inputs)
         | 
| 399 | 
            +
                        feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
         | 
| 400 | 
            +
                    if protect < 0.5 and pitch != None and pitchf != None:
         | 
| 401 | 
            +
                        feats0 = feats.clone()
         | 
| 402 | 
            +
                    if (
         | 
| 403 | 
            +
                        isinstance(index, type(None)) == False
         | 
| 404 | 
            +
                        and isinstance(big_npy, type(None)) == False
         | 
| 405 | 
            +
                        and index_rate != 0
         | 
| 406 | 
            +
                    ):
         | 
| 407 | 
            +
                        npy = feats[0].cpu().numpy()
         | 
| 408 | 
            +
                        if self.is_half:
         | 
| 409 | 
            +
                            npy = npy.astype("float32")
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                        # _, I = index.search(npy, 1)
         | 
| 412 | 
            +
                        # npy = big_npy[I.squeeze()]
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                        score, ix = index.search(npy, k=8)
         | 
| 415 | 
            +
                        weight = np.square(1 / score)
         | 
| 416 | 
            +
                        weight /= weight.sum(axis=1, keepdims=True)
         | 
| 417 | 
            +
                        npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                        if self.is_half:
         | 
| 420 | 
            +
                            npy = npy.astype("float16")
         | 
| 421 | 
            +
                        feats = (
         | 
| 422 | 
            +
                            torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
         | 
| 423 | 
            +
                            + (1 - index_rate) * feats
         | 
| 424 | 
            +
                        )
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
         | 
| 427 | 
            +
                    if protect < 0.5 and pitch != None and pitchf != None:
         | 
| 428 | 
            +
                        feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
         | 
| 429 | 
            +
                            0, 2, 1
         | 
| 430 | 
            +
                        )
         | 
| 431 | 
            +
                    t1 = ttime()
         | 
| 432 | 
            +
                    p_len = audio0.shape[0] // self.window
         | 
| 433 | 
            +
                    if feats.shape[1] < p_len:
         | 
| 434 | 
            +
                        p_len = feats.shape[1]
         | 
| 435 | 
            +
                        if pitch != None and pitchf != None:
         | 
| 436 | 
            +
                            pitch = pitch[:, :p_len]
         | 
| 437 | 
            +
                            pitchf = pitchf[:, :p_len]
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    if protect < 0.5 and pitch != None and pitchf != None:
         | 
| 440 | 
            +
                        pitchff = pitchf.clone()
         | 
| 441 | 
            +
                        pitchff[pitchf > 0] = 1
         | 
| 442 | 
            +
                        pitchff[pitchf < 1] = protect
         | 
| 443 | 
            +
                        pitchff = pitchff.unsqueeze(-1)
         | 
| 444 | 
            +
                        feats = feats * pitchff + feats0 * (1 - pitchff)
         | 
| 445 | 
            +
                        feats = feats.to(feats0.dtype)
         | 
| 446 | 
            +
                    p_len = torch.tensor([p_len], device=self.device).long()
         | 
| 447 | 
            +
                    with torch.no_grad():
         | 
| 448 | 
            +
                        if pitch != None and pitchf != None:
         | 
| 449 | 
            +
                            audio1 = (
         | 
| 450 | 
            +
                                (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
         | 
| 451 | 
            +
                                .data.cpu()
         | 
| 452 | 
            +
                                .float()
         | 
| 453 | 
            +
                                .numpy()
         | 
| 454 | 
            +
                            )
         | 
| 455 | 
            +
                        else:
         | 
| 456 | 
            +
                            audio1 = (
         | 
| 457 | 
            +
                                (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
         | 
| 458 | 
            +
                            )
         | 
| 459 | 
            +
                    del feats, p_len, padding_mask
         | 
| 460 | 
            +
                    if torch.cuda.is_available():
         | 
| 461 | 
            +
                        torch.cuda.empty_cache()
         | 
| 462 | 
            +
                    t2 = ttime()
         | 
| 463 | 
            +
                    times[0] += t1 - t0
         | 
| 464 | 
            +
                    times[2] += t2 - t1
         | 
| 465 | 
            +
                    return audio1
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                def pipeline(
         | 
| 468 | 
            +
                    self,
         | 
| 469 | 
            +
                    model,
         | 
| 470 | 
            +
                    net_g,
         | 
| 471 | 
            +
                    sid,
         | 
| 472 | 
            +
                    audio,
         | 
| 473 | 
            +
                    input_audio_path,
         | 
| 474 | 
            +
                    times,
         | 
| 475 | 
            +
                    f0_up_key,
         | 
| 476 | 
            +
                    f0_method,
         | 
| 477 | 
            +
                    file_index,
         | 
| 478 | 
            +
                    # file_big_npy,
         | 
| 479 | 
            +
                    index_rate,
         | 
| 480 | 
            +
                    if_f0,
         | 
| 481 | 
            +
                    filter_radius,
         | 
| 482 | 
            +
                    tgt_sr,
         | 
| 483 | 
            +
                    resample_sr,
         | 
| 484 | 
            +
                    rms_mix_rate,
         | 
| 485 | 
            +
                    version,
         | 
| 486 | 
            +
                    protect,
         | 
| 487 | 
            +
                    crepe_hop_length,
         | 
| 488 | 
            +
                    f0_file=None,
         | 
| 489 | 
            +
                ):
         | 
| 490 | 
            +
                    if (
         | 
| 491 | 
            +
                        file_index != ""
         | 
| 492 | 
            +
                        # and file_big_npy != ""
         | 
| 493 | 
            +
                        # and os.path.exists(file_big_npy) == True
         | 
| 494 | 
            +
                        and os.path.exists(file_index) == True
         | 
| 495 | 
            +
                        and index_rate != 0
         | 
| 496 | 
            +
                    ):
         | 
| 497 | 
            +
                        try:
         | 
| 498 | 
            +
                            index = faiss.read_index(file_index)
         | 
| 499 | 
            +
                            # big_npy = np.load(file_big_npy)
         | 
| 500 | 
            +
                            big_npy = index.reconstruct_n(0, index.ntotal)
         | 
| 501 | 
            +
                        except:
         | 
| 502 | 
            +
                            traceback.print_exc()
         | 
| 503 | 
            +
                            index = big_npy = None
         | 
| 504 | 
            +
                    else:
         | 
| 505 | 
            +
                        index = big_npy = None
         | 
| 506 | 
            +
                    audio = signal.filtfilt(bh, ah, audio)
         | 
| 507 | 
            +
                    audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
         | 
| 508 | 
            +
                    opt_ts = []
         | 
| 509 | 
            +
                    if audio_pad.shape[0] > self.t_max:
         | 
| 510 | 
            +
                        audio_sum = np.zeros_like(audio)
         | 
| 511 | 
            +
                        for i in range(self.window):
         | 
| 512 | 
            +
                            audio_sum += audio_pad[i : i - self.window]
         | 
| 513 | 
            +
                        for t in range(self.t_center, audio.shape[0], self.t_center):
         | 
| 514 | 
            +
                            opt_ts.append(
         | 
| 515 | 
            +
                                t
         | 
| 516 | 
            +
                                - self.t_query
         | 
| 517 | 
            +
                                + np.where(
         | 
| 518 | 
            +
                                    np.abs(audio_sum[t - self.t_query : t + self.t_query])
         | 
| 519 | 
            +
                                    == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
         | 
| 520 | 
            +
                                )[0][0]
         | 
| 521 | 
            +
                            )
         | 
| 522 | 
            +
                    s = 0
         | 
| 523 | 
            +
                    audio_opt = []
         | 
| 524 | 
            +
                    t = None
         | 
| 525 | 
            +
                    t1 = ttime()
         | 
| 526 | 
            +
                    audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
         | 
| 527 | 
            +
                    p_len = audio_pad.shape[0] // self.window
         | 
| 528 | 
            +
                    inp_f0 = None
         | 
| 529 | 
            +
                    if hasattr(f0_file, "name") == True:
         | 
| 530 | 
            +
                        try:
         | 
| 531 | 
            +
                            with open(f0_file.name, "r") as f:
         | 
| 532 | 
            +
                                lines = f.read().strip("\n").split("\n")
         | 
| 533 | 
            +
                            inp_f0 = []
         | 
| 534 | 
            +
                            for line in lines:
         | 
| 535 | 
            +
                                inp_f0.append([float(i) for i in line.split(",")])
         | 
| 536 | 
            +
                            inp_f0 = np.array(inp_f0, dtype="float32")
         | 
| 537 | 
            +
                        except:
         | 
| 538 | 
            +
                            traceback.print_exc()
         | 
| 539 | 
            +
                    sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
         | 
| 540 | 
            +
                    pitch, pitchf = None, None
         | 
| 541 | 
            +
                    if if_f0 == 1:
         | 
| 542 | 
            +
                        pitch, pitchf = self.get_f0(
         | 
| 543 | 
            +
                            input_audio_path,
         | 
| 544 | 
            +
                            audio_pad,
         | 
| 545 | 
            +
                            p_len,
         | 
| 546 | 
            +
                            f0_up_key,
         | 
| 547 | 
            +
                            f0_method,
         | 
| 548 | 
            +
                            filter_radius,
         | 
| 549 | 
            +
                            crepe_hop_length,
         | 
| 550 | 
            +
                            inp_f0,
         | 
| 551 | 
            +
                        )
         | 
| 552 | 
            +
                        pitch = pitch[:p_len]
         | 
| 553 | 
            +
                        pitchf = pitchf[:p_len]
         | 
| 554 | 
            +
                        if self.device == "mps":
         | 
| 555 | 
            +
                            pitchf = pitchf.astype(np.float32)
         | 
| 556 | 
            +
                        pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
         | 
| 557 | 
            +
                        pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
         | 
| 558 | 
            +
                    t2 = ttime()
         | 
| 559 | 
            +
                    times[1] += t2 - t1
         | 
| 560 | 
            +
                    for t in opt_ts:
         | 
| 561 | 
            +
                        t = t // self.window * self.window
         | 
| 562 | 
            +
                        if if_f0 == 1:
         | 
| 563 | 
            +
                            audio_opt.append(
         | 
| 564 | 
            +
                                self.vc(
         | 
| 565 | 
            +
                                    model,
         | 
| 566 | 
            +
                                    net_g,
         | 
| 567 | 
            +
                                    sid,
         | 
| 568 | 
            +
                                    audio_pad[s : t + self.t_pad2 + self.window],
         | 
| 569 | 
            +
                                    pitch[:, s // self.window : (t + self.t_pad2) // self.window],
         | 
| 570 | 
            +
                                    pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
         | 
| 571 | 
            +
                                    times,
         | 
| 572 | 
            +
                                    index,
         | 
| 573 | 
            +
                                    big_npy,
         | 
| 574 | 
            +
                                    index_rate,
         | 
| 575 | 
            +
                                    version,
         | 
| 576 | 
            +
                                    protect,
         | 
| 577 | 
            +
                                )[self.t_pad_tgt : -self.t_pad_tgt]
         | 
| 578 | 
            +
                            )
         | 
| 579 | 
            +
                        else:
         | 
| 580 | 
            +
                            audio_opt.append(
         | 
| 581 | 
            +
                                self.vc(
         | 
| 582 | 
            +
                                    model,
         | 
| 583 | 
            +
                                    net_g,
         | 
| 584 | 
            +
                                    sid,
         | 
| 585 | 
            +
                                    audio_pad[s : t + self.t_pad2 + self.window],
         | 
| 586 | 
            +
                                    None,
         | 
| 587 | 
            +
                                    None,
         | 
| 588 | 
            +
                                    times,
         | 
| 589 | 
            +
                                    index,
         | 
| 590 | 
            +
                                    big_npy,
         | 
| 591 | 
            +
                                    index_rate,
         | 
| 592 | 
            +
                                    version,
         | 
| 593 | 
            +
                                    protect,
         | 
| 594 | 
            +
                                )[self.t_pad_tgt : -self.t_pad_tgt]
         | 
| 595 | 
            +
                            )
         | 
| 596 | 
            +
                        s = t
         | 
| 597 | 
            +
                    if if_f0 == 1:
         | 
| 598 | 
            +
                        audio_opt.append(
         | 
| 599 | 
            +
                            self.vc(
         | 
| 600 | 
            +
                                model,
         | 
| 601 | 
            +
                                net_g,
         | 
| 602 | 
            +
                                sid,
         | 
| 603 | 
            +
                                audio_pad[t:],
         | 
| 604 | 
            +
                                pitch[:, t // self.window :] if t is not None else pitch,
         | 
| 605 | 
            +
                                pitchf[:, t // self.window :] if t is not None else pitchf,
         | 
| 606 | 
            +
                                times,
         | 
| 607 | 
            +
                                index,
         | 
| 608 | 
            +
                                big_npy,
         | 
| 609 | 
            +
                                index_rate,
         | 
| 610 | 
            +
                                version,
         | 
| 611 | 
            +
                                protect,
         | 
| 612 | 
            +
                            )[self.t_pad_tgt : -self.t_pad_tgt]
         | 
| 613 | 
            +
                        )
         | 
| 614 | 
            +
                    else:
         | 
| 615 | 
            +
                        audio_opt.append(
         | 
| 616 | 
            +
                            self.vc(
         | 
| 617 | 
            +
                                model,
         | 
| 618 | 
            +
                                net_g,
         | 
| 619 | 
            +
                                sid,
         | 
| 620 | 
            +
                                audio_pad[t:],
         | 
| 621 | 
            +
                                None,
         | 
| 622 | 
            +
                                None,
         | 
| 623 | 
            +
                                times,
         | 
| 624 | 
            +
                                index,
         | 
| 625 | 
            +
                                big_npy,
         | 
| 626 | 
            +
                                index_rate,
         | 
| 627 | 
            +
                                version,
         | 
| 628 | 
            +
                                protect,
         | 
| 629 | 
            +
                            )[self.t_pad_tgt : -self.t_pad_tgt]
         | 
| 630 | 
            +
                        )
         | 
| 631 | 
            +
                    audio_opt = np.concatenate(audio_opt)
         | 
| 632 | 
            +
                    if rms_mix_rate != 1:
         | 
| 633 | 
            +
                        audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
         | 
| 634 | 
            +
                    if resample_sr >= 16000 and tgt_sr != resample_sr:
         | 
| 635 | 
            +
                        audio_opt = librosa.resample(
         | 
| 636 | 
            +
                            audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
         | 
| 637 | 
            +
                        )
         | 
| 638 | 
            +
                    audio_max = np.abs(audio_opt).max() / 0.99
         | 
| 639 | 
            +
                    max_int16 = 32768
         | 
| 640 | 
            +
                    if audio_max > 1:
         | 
| 641 | 
            +
                        max_int16 /= audio_max
         | 
| 642 | 
            +
                    audio_opt = (audio_opt * max_int16).astype(np.int16)
         | 
| 643 | 
            +
                    del pitch, pitchf, sid
         | 
| 644 | 
            +
                    if torch.cuda.is_available():
         | 
| 645 | 
            +
                        torch.cuda.empty_cache()
         | 
| 646 | 
            +
                    return audio_opt
         | 
