torileatherman commited on
Commit
1c7505d
·
1 Parent(s): 28a3150

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -47
app.py DELETED
@@ -1,47 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from PIL import Image
4
- import requests
5
-
6
- import hopsworks
7
- import joblib
8
-
9
- project = hopsworks.login()
10
- fs = project.get_feature_store()
11
-
12
-
13
- mr = project.get_model_registry()
14
- model = mr.get_model("titanic_modal", version=2)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/titanic_model.pkl")
17
-
18
-
19
- def titanic(pclass, sex, age_bin, fare_bin):
20
- input_list = []
21
- input_list.append(pclass)
22
- input_list.append(sex)
23
- input_list.append(age_bin)
24
- input_list.append(fare_bin)
25
- # 'res' is a list of predictions returned as the label.
26
- res = model.predict(np.asarray(input_list).reshape(1, -1))
27
- res_0 = str(res[0])
28
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
29
- # the first element.
30
- prediction_url = "https://raw.githubusercontent.com/torileatherman/serverless_ml_titanic/main/src/assets/"+res_0+".png"
31
- img = Image.open(requests.get(prediction_url, stream=True).raw)
32
- return img
33
-
34
- demo = gr.Interface(
35
- fn=titanic,
36
- title="Titanic Survival Predictive Analytics",
37
- description="Experiment with class, sex, age, and fare type to predict if the passenger survived",
38
- allow_flagging="never",
39
- inputs=[
40
- gr.inputs.Number(default=1, label="Class (1 is highest, 3 is lowest"),
41
- gr.inputs.Number(default=1, label="Gender (0 is male, 1 is female)"),
42
- gr.inputs.Number(default=20, label="Age (years)"),
43
- gr.inputs.Number(default=1, label="Fare Type (1 is lowest, 4 is highest)"),
44
- ],
45
- outputs=gr.Image(type="pil"))
46
-
47
- demo.launch(share=True)