import gradio as gr import hopsworks from datasets import load_dataset import pandas as pd project = hopsworks.login() fs = project.get_feature_store() dataset_api = project.get_dataset_api() dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions") predictions_df = pd.DataFrame(dataset,columns=['Headlines_seq', 'URL','Headline_str','Predictions']) predictions_df_url0 = predictions_df['URL'].iloc[1] predictions_df_url1 = predictions_df['URL'].iloc[2] predictions_df_url2 = predictions_df['URL'].iloc[3] def article_selection(sentiment): if sentiment == "Positive": return predictions_df_url0, predictions_df_url1, predictions_df_url2 #f"""The sentence you requested is Positive!""" elif sentiment == "Negative": return f"""The sentence you requested is Negative!""" else: return f"""The sentence you requested is Neutral!""" demo = gr.Interface( fn=article_selection, inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"), outputs = [gr.Textbox(label="Sentiment of News Articles")], ) #TODO #demo = gr.TabbedInterface([url_demo, voice_demo], ["Swedish YouTube Video to English Text", "Swedish Audio to English Text"]) demo.launch()