torileatherman commited on
Commit
e68deab
·
1 Parent(s): 040c0c0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -19,16 +19,23 @@ negative_preds = grouped_predictions.get_group(0)
19
  def article_selection(sentiment):
20
  if sentiment == "Positive":
21
  predictions = negative_preds
22
- predictions_urls = predictions['Url'][0:3]
23
- return predictions_urls
 
 
24
  elif sentiment == "Negative":
25
  predictions = negative_preds
26
- predictions_urls = predictions['Url'][0:3]
27
- return predictions_urls
 
 
 
28
  else:
29
  predictions = negative_preds
30
- predictions_urls = predictions['Url'][0:3]
31
- return predictions_urls
 
 
32
 
33
  def thanks(url, sentiment):
34
  thanks_text = "Thank you for making our model better!"
@@ -49,7 +56,7 @@ suggestion_demo = gr.Interface(
49
  fn=article_selection,
50
  title = 'Recommending News Articles',
51
  inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
52
- outputs = gr.Textbox(label="Recommended News Articles", lines=3),
53
  description = description1
54
  )
55
 
 
19
  def article_selection(sentiment):
20
  if sentiment == "Positive":
21
  predictions = negative_preds
22
+ predictions_df_url0 = predictions['Url'].iloc[0]
23
+ predictions_df_url1 = predictions['Url'].iloc[1]
24
+ predictions_df_url2 = predictions['Url'].iloc[2]
25
+ return predictions_df_url0, predictions_df_url1, predictions_df_url2
26
  elif sentiment == "Negative":
27
  predictions = negative_preds
28
+ predictions_df_url0 = predictions['Url'].iloc[0]
29
+ predictions_df_url1 = predictions['Url'].iloc[1]
30
+ predictions_df_url2 = predictions['Url'].iloc[2]
31
+ return predictions_df_url0, predictions_df_url1, predictions_df_url2
32
+
33
  else:
34
  predictions = negative_preds
35
+ predictions_df_url0 = predictions['Url'].iloc[0]
36
+ predictions_df_url1 = predictions['Url'].iloc[1]
37
+ predictions_df_url2 = predictions['Url'].iloc[2]
38
+ return predictions_df_url0, predictions_df_url1, predictions_df_url2
39
 
40
  def thanks(url, sentiment):
41
  thanks_text = "Thank you for making our model better!"
 
56
  fn=article_selection,
57
  title = 'Recommending News Articles',
58
  inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
59
+ outputs = [gr.Textbox(label="Recommended News Articles"),gr.Textbox(),gr.Textbox()]
60
  description = description1
61
  )
62