torileatherman commited on
Commit
12c27ac
·
1 Parent(s): 3832023

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -8
app.py CHANGED
@@ -5,12 +5,12 @@ from huggingface_hub import create_repo
5
 
6
  dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
7
  predictions_df = pd.DataFrame(dataset)
8
- grouped_predictions = predictions_df.groupby(predictions_df.Sentiment)
9
- #positive_preds = grouped_predictions.get_group(2)
10
- #neutral_preds = grouped_predictions.get_group(1)
11
  negative_preds = grouped_predictions.get_group(0)
12
 
13
- predictions_df['Sentiment'] = predictions_df['Sentiment'].map({0: 'Negative', 1: 'Neutral', 2: 'Positive'})
14
 
15
 
16
  def article_selection(sentiment):
@@ -18,27 +18,27 @@ def article_selection(sentiment):
18
  predictions = negative_preds
19
  top3 = predictions[0:3]
20
  top3_result = top3[['Headline_string','Url']]
21
- top3_result.rename(columns = {'Headline_str':'Headlines', 'Url':'URL'})
22
  return top3_result
23
 
24
  elif sentiment == "Negative":
25
  predictions = negative_preds
26
  top3 = predictions[0:3]
27
  top3_result = top3[['Headline_string','Url']]
28
- top3_result.rename(columns = {'Headline_str':'Headlines', 'Url':'URL'})
29
  return top3_result
30
  else:
31
  predictions = negative_preds
32
  top3 = predictions[0:3]
33
  top3_result = top3[['Headline_string','Url']]
34
- top3_result.rename(columns = {'Headline_str':'Headlines', 'Url':'URL'})
35
  return top3_result
36
 
37
  def manual_label():
38
  # Selecting random row from batch data
39
  random_sample = predictions_df.sample()
40
  random_headline = random_sample['Headline_string'].iloc[0]
41
- random_prediction = random_sample['Sentiment'].iloc[0]
42
  return random_headline, random_prediction
43
 
44
  def thanks(sentiment):
 
5
 
6
  dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
7
  predictions_df = pd.DataFrame(dataset)
8
+ grouped_predictions = predictions_df.groupby(predictions_df.Prediction)
9
+ positive_preds = grouped_predictions.get_group(2)
10
+ neutral_preds = grouped_predictions.get_group(1)
11
  negative_preds = grouped_predictions.get_group(0)
12
 
13
+ predictions_df['Prediction'] = predictions_df['Prediction'].map({0: 'Negative', 1: 'Neutral', 2: 'Positive'})
14
 
15
 
16
  def article_selection(sentiment):
 
18
  predictions = negative_preds
19
  top3 = predictions[0:3]
20
  top3_result = top3[['Headline_string','Url']]
21
+ top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
22
  return top3_result
23
 
24
  elif sentiment == "Negative":
25
  predictions = negative_preds
26
  top3 = predictions[0:3]
27
  top3_result = top3[['Headline_string','Url']]
28
+ top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
29
  return top3_result
30
  else:
31
  predictions = negative_preds
32
  top3 = predictions[0:3]
33
  top3_result = top3[['Headline_string','Url']]
34
+ top3_result.rename(columns = {'Headline_string':'Headlines', 'Url':'URL'})
35
  return top3_result
36
 
37
  def manual_label():
38
  # Selecting random row from batch data
39
  random_sample = predictions_df.sample()
40
  random_headline = random_sample['Headline_string'].iloc[0]
41
+ random_prediction = random_sample['Prediction'].iloc[0]
42
  return random_headline, random_prediction
43
 
44
  def thanks(sentiment):