torileatherman's picture
Update app.py
7f33b70
raw
history blame
1.19 kB
import gradio as gr
import hopsworks
from datasets import load_dataset
import numpy as np
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
dataset_api.download("Resources/batch_data_predictions.csv")
dataset = load_dataset("csv", data_files="batch_data_predictions.csv")
predictions_df = pd.DataFrame(dataset,columns=['Headlines', 'URL','Predictions'],)
predictions_df_url = predictions_df['URL']
def article_selection(sentiment):
if sentiment == "Positive":
return predictions_df_url #f"""The sentence you requested is Positive!"""
#elif sentiment == "Negative":
# return f"""The sentence you requested is Negative!"""
#else:
# return f"""The sentence you requested is Neutral!"""
demo = gr.Interface(
fn=article_selection,
inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
outputs = [gr.Textbox(label="Sentiment of News Articles")],
)
#TODO
#demo = gr.TabbedInterface([url_demo, voice_demo], ["Swedish YouTube Video to English Text", "Swedish Audio to English Text"])
demo.launch()