torileatherman's picture
Update app.py
5673b9a
raw
history blame
1.71 kB
import gradio as gr
import hopsworks
from datasets import load_dataset
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
predictions_df = pd.DataFrame(dataset)
predictions_df_url0 = predictions_df['Url'].iloc[0]
predictions_df_url1 = predictions_df['Url'].iloc[1]
predictions_df_url2 = predictions_df['Url'].iloc[2]
predictions_df_urls = [[predictions_df_url0],
[predictions_df_url1],
[predictions_df_url2]]
def article_selection(sentiment):
if sentiment == "Positive":
return predictions_df_urls #f"""The sentence you requested is Positive!"""
elif sentiment == "Negative":
return f"""The sentence you requested is Negative!"""
else:
return f"""The sentence you requested is Neutral!"""
description = '''
This application recommends news articles depending on the sentiment of the headline.
Enter your preference of what type of news articles you would like recommended to you today: Positive, Negative, or Neutral.
'''
demo = gr.Interface(
fn=article_selection,
title = 'Extractive News Summarizer BART',
inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
outputs = gr.Textbox(label="Recommended News Articles", lines=3),
description = description,
examples=predictions_df_urls)
#TODO
#demo = gr.TabbedInterface([url_demo, voice_demo], ["Swedish YouTube Video to English Text", "Swedish Audio to English Text"])
demo.launch()