Spaces:
Runtime error
Runtime error
import gradio as gr | |
import hopsworks | |
from datasets import load_dataset | |
import pandas as pd | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
dataset_api = project.get_dataset_api() | |
dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions") | |
predictions_df = pd.DataFrame(dataset,columns=['Headlines_seq', 'URL','Headline_str','Predictions']) | |
predictions_df_url0 = predictions_df['URL'].iloc[1] | |
predictions_df_url1 = predictions_df['URL'].iloc[2] | |
predictions_df_url2 = predictions_df['URL'].iloc[3] | |
def article_selection(sentiment): | |
if sentiment == "Positive": | |
return predictions_df_url0, predictions_df_url1, predictions_df_url2 #f"""The sentence you requested is Positive!""" | |
elif sentiment == "Negative": | |
return f"""The sentence you requested is Negative!""" | |
else: | |
return f"""The sentence you requested is Neutral!""" | |
demo = gr.Interface( | |
fn=article_selection, | |
inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"), | |
outputs = [gr.Textbox(label="Sentiment of News Articles")], | |
) | |
#TODO | |
#demo = gr.TabbedInterface([url_demo, voice_demo], ["Swedish YouTube Video to English Text", "Swedish Audio to English Text"]) | |
demo.launch() |