Spaces:
Runtime error
Runtime error
File size: 2,080 Bytes
11dc9a8 adec7fa 7485bd9 7f33b70 adec7fa a3d5133 f7c6bf3 11dc9a8 fe08354 378829d adec7fa 92533eb 3c22553 adec7fa 92533eb 11dc9a8 92533eb 6311754 5673b9a 9436bab 11dc9a8 92533eb d11c57f 92533eb 11dc9a8 ce4abb2 11dc9a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import hopsworks
from datasets import load_dataset
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
dataset_api = project.get_dataset_api()
dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
predictions_df = pd.DataFrame(dataset)
predictions_df_url0 = predictions_df['Url'].iloc[0]
predictions_df_url1 = predictions_df['Url'].iloc[1]
predictions_df_url2 = predictions_df['Url'].iloc[2]
predictions_df_urls = [[predictions_df_url0],
[predictions_df_url1],
[predictions_df_url2]]
def article_selection(sentiment):
if sentiment == "Positive":
return predictions_df_urls #f"""The sentence you requested is Positive!"""
elif sentiment == "Negative":
return f"""The sentence you requested is Negative!"""
else:
return f"""The sentence you requested is Neutral!"""
def thanks():
return "Thank you for making our model better!"
description = '''
This application recommends news articles depending on the sentiment of the headline.
Enter your preference of what type of news articles you would like recommended to you today: Positive, Negative, or Neutral.
'''
suggestion_demo = gr.Interface(
fn=article_selection,
title = 'Recommending News Articles',
inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
outputs = gr.Textbox(label="Recommended News Articles", lines=3),
description = description,
examples=predictions_df_urls)
manual_label_demo = gr.Interface(
fn=thanks,
title="Manually Label a News Article",
[
gr.Textbox(label = "Paste in URL of news article here."),
gr.Dropdown(["Positive","Negative","Neutral"], label="Select the sentiment of the news article.")
],
outputs = gr.Textbox()
)
demo = gr.TabbedInterface([suggestion_demo, manual_label_demo], ["Get recommended news articles", "Help improve our model"])
demo.launch() |