File size: 2,499 Bytes
11dc9a8
adec7fa
7485bd9
7f33b70
adec7fa
 
 
 
 
 
a3d5133
 
ab2c9b6
 
 
 
 
11dc9a8
 
 
ab2c9b6
 
 
378829d
ab2c9b6
 
 
378829d
ab2c9b6
 
 
adec7fa
6153bc6
5a265b2
 
92533eb
b4aeeaf
3c22553
 
 
adec7fa
b4aeeaf
 
 
 
 
 
92533eb
11dc9a8
92533eb
6311754
5673b9a
b4aeeaf
 
11dc9a8
92533eb
 
 
0551e7e
 
5a265b2
ab2c9b6
92533eb
 
11dc9a8
ce4abb2
11dc9a8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import hopsworks
from datasets import load_dataset
import pandas as pd

project = hopsworks.login()
fs = project.get_feature_store()

dataset_api = project.get_dataset_api()

dataset = load_dataset("torileatherman/sentiment_analysis_batch_predictions", split='train')
predictions_df = pd.DataFrame(dataset)
grouped_predictions = predictions_df.groupby(predictions_df.Sentiment)
positive_preds = grouped_predictions.get_group(2)
neutral_preds = grouped_predictions.get_group(1)
negative_preds = grouped_predictions.get_group(0)


def article_selection(sentiment):
    if sentiment == "Positive":
        predictions = positive_preds
        predictions_urls = predictions['Url'][0:3]
        return predictions_urls
    elif sentiment == "Negative":
        predictions = negative_preds
        predictions_urls = predictions['Url'][0:3]
        return predictions_urls
    else:
        predictions = neutral_preds
        predictions_urls = predictions['Url'][0:3]
        return predictions_urls

def thanks(url, sentiment):
    thanks_text = "Thank you for making our model better!"
    return thanks_text

description1 =  '''
        This application recommends news articles depending on the sentiment of the headline.
        Enter your preference of what type of news articles you would like recommended to you today: Positive, Negative, or Neutral.
        '''

description2 =  '''
        This application recommends news articles depending on the sentiment of the headline.
        Enter a news article url and its sentiment to help us improve our model.
        The more data we have, the better news articles we can recommend to you!
        '''

suggestion_demo = gr.Interface(
    fn=article_selection,
    title = 'Recommending News Articles',
    inputs = gr.Dropdown(["Positive","Negative","Neutral"], label="What type of news articles would you like recommended?"),
    outputs = gr.Textbox(label="Recommended News Articles", lines=3),
    description = description1
)

manual_label_demo = gr.Interface(
    fn=thanks,
    title="Manually Label a News Article",
    inputs=[gr.Textbox(label = "Paste in URL of news article here."),
            gr.Dropdown(["Positive","Negative","Neutral"], label="Select the sentiment of the news article.")],
    outputs = gr.Textbox(label="Output"),
    description = description2
)


demo = gr.TabbedInterface([suggestion_demo, manual_label_demo], ["Get recommended news articles", "Help improve our model"])


demo.launch()