Spaces:
Running
on
Zero
Running
on
Zero
Update diffusers_helper/memory.py
Browse files- diffusers_helper/memory.py +88 -15
diffusers_helper/memory.py
CHANGED
|
@@ -2,10 +2,35 @@
|
|
| 2 |
|
| 3 |
|
| 4 |
import torch
|
|
|
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
cpu = torch.device('cpu')
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
gpu_complete_modules = []
|
| 10 |
|
| 11 |
|
|
@@ -57,7 +82,11 @@ class DynamicSwapInstaller:
|
|
| 57 |
return
|
| 58 |
|
| 59 |
|
| 60 |
-
def fake_diffusers_current_device(model: torch.nn.Module, target_device
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
if hasattr(model, 'scale_shift_table'):
|
| 62 |
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
| 63 |
return
|
|
@@ -71,19 +100,47 @@ def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.d
|
|
| 71 |
def get_cuda_free_memory_gb(device=None):
|
| 72 |
if device is None:
|
| 73 |
device = gpu
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 85 |
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
for m in model.modules():
|
| 88 |
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
| 89 |
torch.cuda.empty_cache()
|
|
@@ -100,6 +157,21 @@ def move_model_to_device_with_memory_preservation(model, target_device, preserve
|
|
| 100 |
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 101 |
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
for m in model.modules():
|
| 104 |
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
| 105 |
torch.cuda.empty_cache()
|
|
@@ -115,22 +187,23 @@ def offload_model_from_device_for_memory_preservation(model, target_device, pres
|
|
| 115 |
|
| 116 |
def unload_complete_models(*args):
|
| 117 |
for m in gpu_complete_modules + list(args):
|
| 118 |
-
if m is None:
|
| 119 |
-
continue
|
| 120 |
m.to(device=cpu)
|
| 121 |
print(f'Unloaded {m.__class__.__name__} as complete.')
|
| 122 |
|
| 123 |
gpu_complete_modules.clear()
|
| 124 |
-
torch.cuda.empty_cache()
|
| 125 |
return
|
| 126 |
|
| 127 |
|
| 128 |
def load_model_as_complete(model, target_device, unload=True):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
if unload:
|
| 130 |
unload_complete_models()
|
| 131 |
|
| 132 |
model.to(device=target_device)
|
| 133 |
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
| 134 |
|
| 135 |
-
gpu_complete_modules.append(model)
|
| 136 |
-
return
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
import torch
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# 检查是否在Hugging Face Space环境中
|
| 8 |
+
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
| 9 |
|
| 10 |
+
# 设置CPU设备
|
| 11 |
cpu = torch.device('cpu')
|
| 12 |
+
|
| 13 |
+
# 在Stateless GPU环境中,不要在主进程初始化CUDA
|
| 14 |
+
def get_gpu_device():
|
| 15 |
+
if IN_HF_SPACE:
|
| 16 |
+
# 在Spaces中将延迟初始化GPU设备
|
| 17 |
+
return 'cuda' # 返回字符串,而不是实际初始化设备
|
| 18 |
+
|
| 19 |
+
# 非Spaces环境正常初始化
|
| 20 |
+
try:
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
return torch.device(f'cuda:{torch.cuda.current_device()}')
|
| 23 |
+
else:
|
| 24 |
+
print("CUDA不可用,使用CPU作为默认设备")
|
| 25 |
+
return torch.device('cpu')
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"初始化CUDA设备时出错: {e}")
|
| 28 |
+
print("回退到CPU设备")
|
| 29 |
+
return torch.device('cpu')
|
| 30 |
+
|
| 31 |
+
# 保存一个字符串表示,而不是实际的设备对象
|
| 32 |
+
gpu = get_gpu_device()
|
| 33 |
+
|
| 34 |
gpu_complete_modules = []
|
| 35 |
|
| 36 |
|
|
|
|
| 82 |
return
|
| 83 |
|
| 84 |
|
| 85 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
|
| 86 |
+
# 转换字符串设备为torch.device
|
| 87 |
+
if isinstance(target_device, str):
|
| 88 |
+
target_device = torch.device(target_device)
|
| 89 |
+
|
| 90 |
if hasattr(model, 'scale_shift_table'):
|
| 91 |
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
| 92 |
return
|
|
|
|
| 100 |
def get_cuda_free_memory_gb(device=None):
|
| 101 |
if device is None:
|
| 102 |
device = gpu
|
| 103 |
+
|
| 104 |
+
# 如果是字符串,转换为设备
|
| 105 |
+
if isinstance(device, str):
|
| 106 |
+
device = torch.device(device)
|
| 107 |
+
|
| 108 |
+
# 如果不是CUDA设备,返回默认值
|
| 109 |
+
if device.type != 'cuda':
|
| 110 |
+
print("无法获取非CUDA设备的内存信息,返回默认值")
|
| 111 |
+
return 6.0 # 返回一个默认值
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
memory_stats = torch.cuda.memory_stats(device)
|
| 115 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
| 116 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
| 117 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
| 118 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
| 119 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
| 120 |
+
return bytes_total_available / (1024 ** 3)
|
| 121 |
+
except Exception as e:
|
| 122 |
+
print(f"获取CUDA内存信息时出错: {e}")
|
| 123 |
+
return 6.0 # 返回一个默认值
|
| 124 |
|
| 125 |
|
| 126 |
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 127 |
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
| 128 |
|
| 129 |
+
# 如果是字符串,转换为设备
|
| 130 |
+
if isinstance(target_device, str):
|
| 131 |
+
target_device = torch.device(target_device)
|
| 132 |
+
|
| 133 |
+
# 如果gpu是字符串,转换为设备
|
| 134 |
+
gpu_device = gpu
|
| 135 |
+
if isinstance(gpu_device, str):
|
| 136 |
+
gpu_device = torch.device(gpu_device)
|
| 137 |
+
|
| 138 |
+
# 如果目标设备是CPU或当前在CPU上,直接移动
|
| 139 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
| 140 |
+
model.to(device=target_device)
|
| 141 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 142 |
+
return
|
| 143 |
+
|
| 144 |
for m in model.modules():
|
| 145 |
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
| 146 |
torch.cuda.empty_cache()
|
|
|
|
| 157 |
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
| 158 |
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
| 159 |
|
| 160 |
+
# 如果是字符串,转换为设备
|
| 161 |
+
if isinstance(target_device, str):
|
| 162 |
+
target_device = torch.device(target_device)
|
| 163 |
+
|
| 164 |
+
# 如果gpu是字符串,转换为设备
|
| 165 |
+
gpu_device = gpu
|
| 166 |
+
if isinstance(gpu_device, str):
|
| 167 |
+
gpu_device = torch.device(gpu_device)
|
| 168 |
+
|
| 169 |
+
# 如果目标设备是CPU或当前在CPU上,直接处理
|
| 170 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
| 171 |
+
model.to(device=cpu)
|
| 172 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
for m in model.modules():
|
| 176 |
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
| 177 |
torch.cuda.empty_cache()
|
|
|
|
| 187 |
|
| 188 |
def unload_complete_models(*args):
|
| 189 |
for m in gpu_complete_modules + list(args):
|
|
|
|
|
|
|
| 190 |
m.to(device=cpu)
|
| 191 |
print(f'Unloaded {m.__class__.__name__} as complete.')
|
| 192 |
|
| 193 |
gpu_complete_modules.clear()
|
| 194 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 195 |
return
|
| 196 |
|
| 197 |
|
| 198 |
def load_model_as_complete(model, target_device, unload=True):
|
| 199 |
+
# 如果是字符串,转换为设备
|
| 200 |
+
if isinstance(target_device, str):
|
| 201 |
+
target_device = torch.device(target_device)
|
| 202 |
+
|
| 203 |
if unload:
|
| 204 |
unload_complete_models()
|
| 205 |
|
| 206 |
model.to(device=target_device)
|
| 207 |
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
| 208 |
|
| 209 |
+
gpu_complete_modules.append(model)
|
|
|