from transformers import pipeline import gradio as gr # Initialize the pipeline pipe = pipeline("text-classification", model="himanshutitoria/quick-commerce-perishability-model") # Prediction function def predict(text): result = pipe(text) return result[0]["label"] # Define the interface with gr.Blocks() as iface: # Add an image at the top gr.Image( value="top_image.webp", # Replace with your image URL or file path label="Perishability Tagging", show_label=False, ) input_textbox = gr.Textbox( label="Enter a Product Name", placeholder="Enter a name here...", interactive=True, ) # Add the main Gradio interface with gr.Row(): gr.Markdown("# Quick Commerce Perishability Tagging") outputs = gr.Textbox(label="Predicted result") gr.Interface( fn=predict, inputs=input_textbox, outputs=outputs, examples=[ ["Milk"], ["Perfume"], ["Refined oil"], ["Tata Salt"], ["Cheese"], ["Butterscotch Icecream"], ["Thepla"], ], ) iface.launch()