Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from openrec.modeling.common import Activation | |
| class ConvBNLayer(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=1, | |
| groups=1, | |
| is_vd_mode=False, | |
| act=None, | |
| ): | |
| super(ConvBNLayer, self).__init__() | |
| self.act = act | |
| self.is_vd_mode = is_vd_mode | |
| self._pool2d_avg = nn.AvgPool2d(kernel_size=stride, | |
| stride=stride, | |
| padding=0, | |
| ceil_mode=False) | |
| self._conv = nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=1 if is_vd_mode else stride, | |
| padding=(kernel_size - 1) // 2, | |
| groups=groups, | |
| bias=False, | |
| ) | |
| self._batch_norm = nn.BatchNorm2d(out_channels, ) | |
| if self.act is not None: | |
| self._act = Activation(act_type=act, inplace=True) | |
| def forward(self, inputs): | |
| if self.is_vd_mode: | |
| inputs = self._pool2d_avg(inputs) | |
| y = self._conv(inputs) | |
| y = self._batch_norm(y) | |
| if self.act is not None: | |
| y = self._act(y) | |
| return y | |
| class BottleneckBlock(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| stride, | |
| shortcut=True, | |
| if_first=False, | |
| name=None, | |
| ): | |
| super(BottleneckBlock, self).__init__() | |
| self.scale = 4 | |
| self.conv0 = ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=1, | |
| act='relu', | |
| ) | |
| self.conv1 = ConvBNLayer( | |
| in_channels=out_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| act='relu', | |
| ) | |
| self.conv2 = ConvBNLayer( | |
| in_channels=out_channels, | |
| out_channels=out_channels * self.scale, | |
| kernel_size=1, | |
| act=None, | |
| ) | |
| if not shortcut: | |
| self.short = ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=out_channels * self.scale, | |
| kernel_size=1, | |
| stride=stride, | |
| is_vd_mode=not if_first and stride[0] != 1, | |
| ) | |
| self.shortcut = shortcut | |
| self.out_channels = out_channels * self.scale | |
| def forward(self, inputs): | |
| y = self.conv0(inputs) | |
| conv1 = self.conv1(y) | |
| conv2 = self.conv2(conv1) | |
| if self.shortcut: | |
| short = inputs | |
| else: | |
| short = self.short(inputs) | |
| y = short + conv2 | |
| y = F.relu(y) | |
| return y | |
| class BasicBlock(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| stride, | |
| shortcut=True, | |
| if_first=False, | |
| name=None, | |
| ): | |
| super(BasicBlock, self).__init__() | |
| self.stride = stride | |
| self.scale = 1 | |
| self.conv0 = ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| stride=stride, | |
| act='relu', | |
| ) | |
| self.conv1 = ConvBNLayer(in_channels=out_channels, | |
| out_channels=out_channels, | |
| kernel_size=3, | |
| act=None) | |
| if not shortcut: | |
| self.short = ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=1, | |
| stride=stride, | |
| is_vd_mode=not if_first and stride[0] != 1, | |
| ) | |
| self.shortcut = shortcut | |
| self.out_channels = out_channels * self.scale | |
| def forward(self, inputs): | |
| y = self.conv0(inputs) | |
| conv1 = self.conv1(y) | |
| if self.shortcut: | |
| short = inputs | |
| else: | |
| short = self.short(inputs) | |
| y = short + conv1 | |
| y = F.relu(y) | |
| return y | |
| class ResNet(nn.Module): | |
| def __init__(self, in_channels=3, layers=50, **kwargs): | |
| super(ResNet, self).__init__() | |
| self.layers = layers | |
| supported_layers = [18, 34, 50, 101, 152, 200] | |
| assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format( | |
| supported_layers, layers) | |
| if layers == 18: | |
| depth = [2, 2, 2, 2] | |
| elif layers == 34 or layers == 50: | |
| depth = [3, 4, 6, 3] | |
| elif layers == 101: | |
| depth = [3, 4, 23, 3] | |
| elif layers == 152: | |
| depth = [3, 8, 36, 3] | |
| elif layers == 200: | |
| depth = [3, 12, 48, 3] | |
| if layers >= 50: | |
| block_class = BottleneckBlock | |
| else: | |
| block_class = BasicBlock | |
| num_filters = [64, 128, 256, 512] | |
| self.conv1_1 = ConvBNLayer( | |
| in_channels=in_channels, | |
| out_channels=32, | |
| kernel_size=3, | |
| stride=1, | |
| act='relu', | |
| ) | |
| self.conv1_2 = ConvBNLayer(in_channels=32, | |
| out_channels=32, | |
| kernel_size=3, | |
| stride=1, | |
| act='relu') | |
| self.conv1_3 = ConvBNLayer(in_channels=32, | |
| out_channels=64, | |
| kernel_size=3, | |
| stride=1, | |
| act='relu') | |
| self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| # self.block_list = list() | |
| self.block_list = nn.Sequential() | |
| in_channels = 64 | |
| for block in range(len(depth)): | |
| shortcut = False | |
| for i in range(depth[block]): | |
| if layers in [101, 152, 200] and block == 2: | |
| if i == 0: | |
| conv_name = 'res' + str(block + 2) + 'a' | |
| else: | |
| conv_name = 'res' + str(block + 2) + 'b' + str(i) | |
| else: | |
| conv_name = 'res' + str(block + 2) + chr(97 + i) | |
| if i == 0 and block != 0: | |
| stride = (2, 1) | |
| else: | |
| stride = (1, 1) | |
| block_instance = block_class( | |
| in_channels=in_channels, | |
| out_channels=num_filters[block], | |
| stride=stride, | |
| shortcut=shortcut, | |
| if_first=block == i == 0, | |
| name=conv_name, | |
| ) | |
| shortcut = True | |
| in_channels = block_instance.out_channels | |
| # self.block_list.append(bottleneck_block) | |
| self.block_list.add_module('bb_%d_%d' % (block, i), | |
| block_instance) | |
| self.out_channels = num_filters[block] | |
| self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
| def forward(self, inputs): | |
| y = self.conv1_1(inputs) | |
| y = self.conv1_2(y) | |
| y = self.conv1_3(y) | |
| y = self.pool2d_max(y) | |
| for block in self.block_list: | |
| y = block(y) | |
| y = self.out_pool(y) | |
| return y | |