File size: 10,404 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import json
import math
import os
import random
import traceback

import cv2
import numpy as np
from torch.utils.data import Dataset

from openrec.preprocess import create_operators, transform


class SimpleDataSet(Dataset):

    def __init__(self, config, mode, logger, seed=None, epoch=0):
        super(SimpleDataSet, self).__init__()
        self.logger = logger
        self.mode = mode.lower()

        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']

        self.delimiter = dataset_config.get('delimiter', '\t')
        label_file_list = dataset_config.pop('label_file_list')
        data_source_num = len(label_file_list)
        ratio_list = dataset_config.get('ratio_list', 1.0)
        if isinstance(ratio_list, (float, int)):
            ratio_list = [float(ratio_list)] * int(data_source_num)

        assert len(
            ratio_list
        ) == data_source_num, 'The length of ratio_list should be the same as the file_list.'
        self.data_dir = dataset_config['data_dir']
        self.do_shuffle = loader_config['shuffle']
        self.seed = seed
        logger.info(f'Initialize indexs of datasets: {label_file_list}')
        self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
        self.data_idx_order_list = list(range(len(self.data_lines)))
        if self.mode == 'train' and self.do_shuffle:
            self.shuffle_data_random()

        self.set_epoch_as_seed(self.seed, dataset_config)

        self.ops = create_operators(dataset_config['transforms'],
                                    global_config)
        self.ext_op_transform_idx = dataset_config.get('ext_op_transform_idx',
                                                       2)
        self.need_reset = True in [x < 1 for x in ratio_list]

    def set_epoch_as_seed(self, seed, dataset_config):
        if self.mode == 'train':
            try:
                border_map_id = [
                    index for index, dictionary in enumerate(
                        dataset_config['transforms'])
                    if 'MakeBorderMap' in dictionary
                ][0]
                shrink_map_id = [
                    index for index, dictionary in enumerate(
                        dataset_config['transforms'])
                    if 'MakeShrinkMap' in dictionary
                ][0]
                dataset_config['transforms'][border_map_id]['MakeBorderMap'][
                    'epoch'] = seed if seed is not None else 0
                dataset_config['transforms'][shrink_map_id]['MakeShrinkMap'][
                    'epoch'] = seed if seed is not None else 0
            except Exception:
                return

    def get_image_info_list(self, file_list, ratio_list):
        if isinstance(file_list, str):
            file_list = [file_list]
        data_lines = []
        for idx, file in enumerate(file_list):
            with open(file, 'rb') as f:
                lines = f.readlines()
                if self.mode == 'train' or ratio_list[idx] < 1.0:
                    random.seed(self.seed)
                    lines = random.sample(lines,
                                          round(len(lines) * ratio_list[idx]))
                data_lines.extend(lines)
        return data_lines

    def shuffle_data_random(self):
        random.seed(self.seed)
        random.shuffle(self.data_lines)
        return

    def _try_parse_filename_list(self, file_name):
        # multiple images -> one gt label
        if len(file_name) > 0 and file_name[0] == '[':
            try:
                info = json.loads(file_name)
                file_name = random.choice(info)
            except:
                pass
        return file_name

    def get_ext_data(self):
        ext_data_num = 0
        for op in self.ops:
            if hasattr(op, 'ext_data_num'):
                ext_data_num = getattr(op, 'ext_data_num')
                break
        load_data_ops = self.ops[:self.ext_op_transform_idx]
        ext_data = []

        while len(ext_data) < ext_data_num:
            file_idx = self.data_idx_order_list[np.random.randint(
                self.__len__())]
            data_line = self.data_lines[file_idx]
            data_line = data_line.decode('utf-8')
            substr = data_line.strip('\n').split(self.delimiter)
            file_name = substr[0]
            file_name = self._try_parse_filename_list(file_name)
            label = substr[1]
            img_path = os.path.join(self.data_dir, file_name)
            data = {'img_path': img_path, 'label': label}
            if not os.path.exists(img_path):
                continue
            with open(data['img_path'], 'rb') as f:
                img = f.read()
                data['image'] = img
            data = transform(data, load_data_ops)

            if data is None:
                continue
            if 'polys' in data.keys():
                if data['polys'].shape[1] != 4:
                    continue
            ext_data.append(data)
        return ext_data

    def __getitem__(self, idx):
        file_idx = self.data_idx_order_list[idx]
        data_line = self.data_lines[file_idx]
        try:
            data_line = data_line.decode('utf-8')
            substr = data_line.strip('\n').split(self.delimiter)
            file_name = substr[0]
            file_name = self._try_parse_filename_list(file_name)
            label = substr[1]
            img_path = os.path.join(self.data_dir, file_name)
            data = {'img_path': img_path, 'label': label}

            if not os.path.exists(img_path):
                raise Exception('{} does not exist!'.format(img_path))
            with open(data['img_path'], 'rb') as f:
                img = f.read()
                data['image'] = img
            data['ext_data'] = self.get_ext_data()
            outs = transform(data, self.ops)
        except:
            self.logger.error(
                'When parsing line {}, error happened with msg: {}'.format(
                    data_line, traceback.format_exc()))
            outs = None
        if outs is None:
            # during evaluation, we should fix the idx to get same results for many times of evaluation.
            rnd_idx = np.random.randint(self.__len__(
            )) if self.mode == 'train' else (idx + 1) % self.__len__()
            return self.__getitem__(rnd_idx)
        return outs

    def __len__(self):
        return len(self.data_idx_order_list)


class MultiScaleDataSet(SimpleDataSet):

    def __init__(self, config, mode, logger, seed=None):
        super(MultiScaleDataSet, self).__init__(config, mode, logger, seed)
        self.ds_width = config[mode]['dataset'].get('ds_width', False)
        if self.ds_width:
            self.wh_aware()

    def wh_aware(self):
        data_line_new = []
        wh_ratio = []
        for lins in self.data_lines:
            data_line_new.append(lins)
            lins = lins.decode('utf-8')
            name, label, w, h = lins.strip('\n').split(self.delimiter)
            wh_ratio.append(float(w) / float(h))

        self.data_lines = data_line_new
        self.wh_ratio = np.array(wh_ratio)
        self.wh_ratio_sort = np.argsort(self.wh_ratio)
        self.data_idx_order_list = list(range(len(self.data_lines)))

    def resize_norm_img(self, data, imgW, imgH, padding=True):
        img = data['image']
        h = img.shape[0]
        w = img.shape[1]
        if not padding:
            resized_image = cv2.resize(img, (imgW, imgH),
                                       interpolation=cv2.INTER_LINEAR)
            resized_w = imgW
        else:
            ratio = w / float(h)
            if math.ceil(imgH * ratio) > imgW:
                resized_w = imgW
            else:
                resized_w = int(math.ceil(imgH * ratio))
            resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')

        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
        padding_im[:, :, :resized_w] = resized_image
        valid_ratio = min(1.0, float(resized_w / imgW))
        data['image'] = padding_im
        data['valid_ratio'] = valid_ratio
        return data

    def __getitem__(self, properties):
        # properites is a tuple, contains (width, height, index)
        img_height = properties[1]
        idx = properties[2]
        if self.ds_width and properties[3] is not None:
            wh_ratio = properties[3]
            img_width = img_height * (1 if int(round(wh_ratio)) == 0 else int(
                round(wh_ratio)))
            file_idx = self.wh_ratio_sort[idx]
        else:
            file_idx = self.data_idx_order_list[idx]
            img_width = properties[0]
            wh_ratio = None

        data_line = self.data_lines[file_idx]
        try:
            data_line = data_line.decode('utf-8')
            substr = data_line.strip('\n').split(self.delimiter)
            file_name = substr[0]
            file_name = self._try_parse_filename_list(file_name)
            label = substr[1]
            img_path = os.path.join(self.data_dir, file_name)
            data = {'img_path': img_path, 'label': label}
            if not os.path.exists(img_path):
                raise Exception('{} does not exist!'.format(img_path))
            with open(data['img_path'], 'rb') as f:
                img = f.read()
                data['image'] = img
            data['ext_data'] = self.get_ext_data()
            outs = transform(data, self.ops[:-1])
            if outs is not None:
                outs = self.resize_norm_img(outs, img_width, img_height)
                outs = transform(outs, self.ops[-1:])
        except:
            self.logger.error(
                'When parsing line {}, error happened with msg: {}'.format(
                    data_line, traceback.format_exc()))
            outs = None
        if outs is None:
            # during evaluation, we should fix the idx to get same results for many times of evaluation.
            rnd_idx = np.random.randint(self.__len__(
            )) if self.mode == 'train' else (idx + 1) % self.__len__()
            return self.__getitem__([img_width, img_height, rnd_idx, wh_ratio])
        return outs