Spaces:
Running
Running
File size: 11,117 Bytes
29f689c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import io
import math
import random
import re
import unicodedata
import cv2
import lmdb
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from openrec.preprocess import create_operators, transform
class CharsetAdapter:
"""Transforms labels according to the target charset."""
def __init__(self, target_charset) -> None:
super().__init__()
self.lowercase_only = target_charset == target_charset.lower()
self.uppercase_only = target_charset == target_charset.upper()
self.unsupported = re.compile(f'[^{re.escape(target_charset)}]')
def __call__(self, label):
if self.lowercase_only:
label = label.lower()
elif self.uppercase_only:
label = label.upper()
# Remove unsupported characters
label = self.unsupported.sub('', label)
return label
class RatioDataSetTest(Dataset):
def __init__(self, config, mode, logger, seed=None, epoch=1):
super(RatioDataSetTest, self).__init__()
self.ds_width = config[mode]['dataset'].get('ds_width', True)
global_config = config['Global']
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
max_ratio = loader_config.get('max_ratio', 10)
min_ratio = loader_config.get('min_ratio', 1)
data_dir_list = dataset_config['data_dir_list']
self.do_shuffle = loader_config['shuffle']
self.seed = epoch
self.max_text_length = global_config['max_text_length']
data_source_num = len(data_dir_list)
ratio_list = dataset_config.get('ratio_list', 1.0)
if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * int(data_source_num)
assert len(
ratio_list
) == data_source_num, 'The length of ratio_list should be the same as the file_list.'
self.lmdb_sets = self.load_hierarchical_lmdb_dataset(
data_dir_list, ratio_list)
for data_dir in data_dir_list:
logger.info('Initialize indexs of datasets:%s' % data_dir)
self.logger = logger
data_idx_order_list = self.dataset_traversal()
character_dict_path = global_config.get('character_dict_path', None)
use_space_char = global_config.get('use_space_char', False)
if character_dict_path is None:
char_test = '0123456789abcdefghijklmnopqrstuvwxyz'
else:
char_test = ''
with open(character_dict_path, 'rb') as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip('\n').strip('\r\n')
char_test += line
if use_space_char:
char_test += ' '
wh_ratio, data_idx_order_list = self.get_wh_ratio(
data_idx_order_list, char_test)
self.data_idx_order_list = np.array(data_idx_order_list)
wh_ratio = np.around(np.array(wh_ratio))
self.wh_ratio = np.clip(wh_ratio, a_min=min_ratio, a_max=max_ratio)
for i in range(max_ratio + 1):
logger.info((1 * (self.wh_ratio == i)).sum())
self.wh_ratio_sort = np.argsort(self.wh_ratio)
self.ops = create_operators(dataset_config['transforms'],
global_config)
self.need_reset = True in [x < 1 for x in ratio_list]
self.error = 0
self.base_shape = dataset_config.get(
'base_shape', [[64, 64], [96, 48], [112, 40], [128, 32]])
self.base_h = 32
def get_wh_ratio(self, data_idx_order_list, char_test):
wh_ratio = []
wh_ratio_len = [[0 for _ in range(26)] for _ in range(11)]
data_idx_order_list_filter = []
charset_adapter = CharsetAdapter(char_test)
for idx in range(data_idx_order_list.shape[0]):
lmdb_idx, file_idx = data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
wh_key = 'wh-%09d'.encode() % file_idx
wh = self.lmdb_sets[lmdb_idx]['txn'].get(wh_key)
if wh is None:
img_key = f'image-{file_idx:09d}'.encode()
img = self.lmdb_sets[lmdb_idx]['txn'].get(img_key)
buf = io.BytesIO(img)
w, h = Image.open(buf).size
else:
wh = wh.decode('utf-8')
w, h = wh.split('_')
label_key = 'label-%09d'.encode() % file_idx
label = self.lmdb_sets[lmdb_idx]['txn'].get(label_key)
if label is not None:
# return None
label = label.decode('utf-8')
# if remove_whitespace:
label = ''.join(label.split())
# Normalize unicode composites (if any) and convert to compatible ASCII characters
# if normalize_unicode:
label = unicodedata.normalize('NFKD',
label).encode('ascii',
'ignore').decode()
# Filter by length before removing unsupported characters. The original label might be too long.
if len(label) > self.max_text_length:
continue
label = charset_adapter(label)
if not label:
continue
wh_ratio.append(float(w) / float(h))
wh_ratio_len[int(float(w) /
float(h)) if int(float(w) /
float(h)) <= 10 else
10][len(label) if len(label) <= 25 else 25] += 1
data_idx_order_list_filter.append([lmdb_idx, file_idx])
self.logger.info(wh_ratio_len)
return wh_ratio, data_idx_order_list_filter
def load_hierarchical_lmdb_dataset(self, data_dir_list, ratio_list):
lmdb_sets = {}
dataset_idx = 0
for dirpath, ratio in zip(data_dir_list, ratio_list):
env = lmdb.open(dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False)
txn = env.begin(write=False)
num_samples = int(txn.get('num-samples'.encode()))
lmdb_sets[dataset_idx] = {
'dirpath': dirpath,
'env': env,
'txn': txn,
'num_samples': num_samples,
'ratio_num_samples': int(ratio * num_samples),
}
dataset_idx += 1
return lmdb_sets
def dataset_traversal(self):
lmdb_num = len(self.lmdb_sets)
total_sample_num = 0
for lno in range(lmdb_num):
total_sample_num += self.lmdb_sets[lno]['ratio_num_samples']
data_idx_order_list = np.zeros((total_sample_num, 2))
beg_idx = 0
for lno in range(lmdb_num):
tmp_sample_num = self.lmdb_sets[lno]['ratio_num_samples']
end_idx = beg_idx + tmp_sample_num
data_idx_order_list[beg_idx:end_idx, 0] = lno
data_idx_order_list[beg_idx:end_idx, 1] = list(
random.sample(range(1, self.lmdb_sets[lno]['num_samples'] + 1),
self.lmdb_sets[lno]['ratio_num_samples']))
beg_idx = beg_idx + tmp_sample_num
return data_idx_order_list
def get_img_data(self, value):
"""get_img_data."""
if not value:
return None
imgdata = np.frombuffer(value, dtype='uint8')
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def resize_norm_img(self, data, gen_ratio, padding=True):
img = data['image']
h = img.shape[0]
w = img.shape[1]
imgW, imgH = self.base_shape[gen_ratio - 1] if gen_ratio <= 4 else [
self.base_h * gen_ratio, self.base_h
]
use_ratio = imgW // imgH
if use_ratio >= (w // h) + 2:
self.error += 1
return None
if not padding:
resized_image = cv2.resize(img, (imgW, imgH),
interpolation=cv2.INTER_LINEAR)
resized_w = imgW
else:
ratio = w / float(h)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(
math.ceil(imgH * ratio * (random.random() + 0.5)))
resized_w = min(imgW, resized_w)
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5
resized_image /= 0.5
padding_im = np.zeros((3, imgH, imgW), dtype=np.float32)
padding_im[:, :, :resized_w] = resized_image
valid_ratio = min(1.0, float(resized_w / imgW))
data['image'] = padding_im
data['valid_ratio'] = valid_ratio
data['gen_ratio'] = imgW // imgH
data['real_ratio'] = max(1, round(w / h))
return data
def get_lmdb_sample_info(self, txn, index):
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode('utf-8')
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
return imgbuf, label
def __getitem__(self, properties):
img_width = properties[0]
img_height = properties[1]
idx = properties[2]
ratio = properties[3]
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]['txn'], file_idx)
if sample_info is None:
ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
ids = random.sample(ratio_ids, 1)
return self.__getitem__([img_width, img_height, ids[0], ratio])
img, label = sample_info
data = {'image': img, 'label': label}
outs = transform(data, self.ops[:-1])
if outs is not None:
outs = self.resize_norm_img(outs, ratio, padding=False)
if outs is None:
ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
ids = random.sample(ratio_ids, 1)
return self.__getitem__([img_width, img_height, ids[0], ratio])
outs = transform(outs, self.ops[-1:])
if outs is None:
ratio_ids = np.where(self.wh_ratio == ratio)[0].tolist()
ids = random.sample(ratio_ids, 1)
return self.__getitem__([img_width, img_height, ids[0], ratio])
return outs
def __len__(self):
return self.data_idx_order_list.shape[0]
|