File size: 6,722 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import random

import numpy as np
import torch.distributed as dist
from torch.utils.data import Sampler


class MultiScaleSampler(Sampler):

    def __init__(
        self,
        data_source,
        scales,
        first_bs=128,
        fix_bs=True,
        divided_factor=[8, 16],
        is_training=True,
        ratio_wh=0.8,
        max_w=480.0,
        seed=None,
    ):
        """
        multi scale samper
        Args:
            data_source(dataset)
            scales(list): several scales for image resolution
            first_bs(int): batch size for the first scale in scales
            divided_factor(list[w, h]): ImageNet models down-sample images by a factor, ensure that width and height dimensions are multiples are multiple of devided_factor.
            is_training(boolean): mode
        """
        # min. and max. spatial dimensions
        self.data_source = data_source
        self.data_idx_order_list = np.array(data_source.data_idx_order_list)
        self.ds_width = data_source.ds_width
        self.seed = data_source.seed
        if self.ds_width:
            self.wh_ratio = data_source.wh_ratio
            self.wh_ratio_sort = data_source.wh_ratio_sort
        self.n_data_samples = len(self.data_source)
        self.ratio_wh = ratio_wh
        self.max_w = max_w

        if isinstance(scales[0], list):
            width_dims = [i[0] for i in scales]
            height_dims = [i[1] for i in scales]
        elif isinstance(scales[0], int):
            width_dims = scales
            height_dims = scales
        base_im_w = width_dims[0]
        base_im_h = height_dims[0]
        base_batch_size = first_bs

        # Get the GPU and node related information
        if dist.is_initialized():
            num_replicas = dist.get_world_size()
            rank = dist.get_rank()
        else:
            num_replicas = 1
            rank = 0
        # adjust the total samples to avoid batch dropping
        num_samples_per_replica = int(self.n_data_samples * 1.0 / num_replicas)

        img_indices = [idx for idx in range(self.n_data_samples)]

        self.shuffle = False
        if is_training:
            # compute the spatial dimensions and corresponding batch size
            # ImageNet models down-sample images by a factor of 32.
            # Ensure that width and height dimensions are multiples are multiple of 32.
            width_dims = [
                int((w // divided_factor[0]) * divided_factor[0])
                for w in width_dims
            ]
            height_dims = [
                int((h // divided_factor[1]) * divided_factor[1])
                for h in height_dims
            ]

            img_batch_pairs = list()
            base_elements = base_im_w * base_im_h * base_batch_size
            for h, w in zip(height_dims, width_dims):
                if fix_bs:
                    batch_size = base_batch_size
                else:
                    batch_size = int(max(1, (base_elements / (h * w))))
                img_batch_pairs.append((w, h, batch_size))
            self.img_batch_pairs = img_batch_pairs
            self.shuffle = True
        else:
            self.img_batch_pairs = [(base_im_w, base_im_h, base_batch_size)]

        self.img_indices = img_indices
        self.n_samples_per_replica = num_samples_per_replica
        self.epoch = 0
        self.rank = rank
        self.num_replicas = num_replicas

        self.batch_list = []
        self.current = 0
        last_index = num_samples_per_replica * num_replicas
        indices_rank_i = self.img_indices[self.rank:last_index:self.
                                          num_replicas]
        while self.current < self.n_samples_per_replica:
            for curr_w, curr_h, curr_bsz in self.img_batch_pairs:
                end_index = min(self.current + curr_bsz,
                                self.n_samples_per_replica)
                batch_ids = indices_rank_i[self.current:end_index]
                n_batch_samples = len(batch_ids)
                if n_batch_samples != curr_bsz:
                    batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
                self.current += curr_bsz

                if len(batch_ids) > 0:
                    batch = [curr_w, curr_h, len(batch_ids)]
                    self.batch_list.append(batch)
        random.shuffle(self.batch_list)
        self.length = len(self.batch_list)
        self.batchs_in_one_epoch = self.iter()
        self.batchs_in_one_epoch_id = [
            i for i in range(len(self.batchs_in_one_epoch))
        ]

    def __iter__(self):
        if self.seed is None:
            random.seed(self.epoch)
            self.epoch += 1
        else:
            random.seed(self.seed)
        random.shuffle(self.batchs_in_one_epoch_id)
        for batch_tuple_id in self.batchs_in_one_epoch_id:
            yield self.batchs_in_one_epoch[batch_tuple_id]

    def iter(self):
        if self.shuffle:
            if self.seed is not None:
                random.seed(self.seed)
            else:
                random.seed(self.epoch)
            if not self.ds_width:
                random.shuffle(self.img_indices)
            random.shuffle(self.img_batch_pairs)
            indices_rank_i = self.img_indices[
                self.rank:len(self.img_indices):self.num_replicas]
        else:
            indices_rank_i = self.img_indices[
                self.rank:len(self.img_indices):self.num_replicas]

        start_index = 0
        batchs_in_one_epoch = []
        for batch_tuple in self.batch_list:
            curr_w, curr_h, curr_bsz = batch_tuple
            end_index = min(start_index + curr_bsz, self.n_samples_per_replica)
            batch_ids = indices_rank_i[start_index:end_index]
            n_batch_samples = len(batch_ids)
            if n_batch_samples != curr_bsz:
                batch_ids += indices_rank_i[:(curr_bsz - n_batch_samples)]
            start_index += curr_bsz

            if len(batch_ids) > 0:
                if self.ds_width:
                    wh_ratio_current = self.wh_ratio[
                        self.wh_ratio_sort[batch_ids]]
                    ratio_current = wh_ratio_current.mean()
                    ratio_current = ratio_current if ratio_current * curr_h < self.max_w else self.max_w / curr_h
                else:
                    ratio_current = None
                batch = [(curr_w, curr_h, b_id, ratio_current)
                         for b_id in batch_ids]
                # yield batch
                batchs_in_one_epoch.append(batch)
        return batchs_in_one_epoch

    def set_epoch(self, epoch: int):
        self.epoch = epoch

    def __len__(self):
        return self.length